1
|
Parkinson NJ, Ward A, Malbon AJ, Reardon RJM, Kelly PG. Bovine papillomavirus gene expression and inflammatory pathway activation vary between equine sarcoid tumour subtypes. Vet Immunol Immunopathol 2024; 277:110838. [PMID: 39357074 DOI: 10.1016/j.vetimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Equine sarcoids are common non-metastasising skin tumours in horses, associated with bovine papillomavirus (BPV) infection. Six subtypes are recognised (occult, verrucose, nodular, fibroblastic, mixed and malevolent lesions), with variable clinical behaviour. The pathophysiology underlying varying tumour phenotype is poorly understood, and previous data on associations with viral load have been conflicting. To better understand this clinical variation, we investigated associations between tumour subtype and viral load, viral early protein gene expression, and expression of 10 host genes by quantitative polymerase chain reaction in 27 sarcoids and 5 normal skin samples. Viral DNA copy number did not differ between subtypes but was significantly higher in animals with fewer tumours. Expression of BPV E2 and E6 was higher in occult lesions compared to fibroblastic or nodular lesions, while E5 expression was higher in previously-treated lesions. Of the host genes, only IL6 and IL1B differed between subtypes, with higher expression in fibroblastic lesions, while IL10 and CCL5 were elevated compared to skin in all lesion types, and elevations in TNF and TGFB1 were significant for occult lesions only. Expression of TLR9, ATR, VEGFA and PTGS2 in sarcoids was not significantly different from normal skin, suggesting differences between BPV and human papillomavirus tumorigenesis. Results for BPV viral load and gene expression differed from previous reports and are insufficient to explain the spectrum of tumour phenotypes. Activation of both pro-inflammatory and anti-inflammatory immune pathways in sarcoids could influence tumour growth and effective immune responses, and the contribution of specific infiltrating immune cells requires further investigation.
Collapse
Affiliation(s)
- Nicholas J Parkinson
- College of Medicine and Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
| | - Abby Ward
- College of Medicine and Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Alexandra J Malbon
- College of Medicine and Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Richard J M Reardon
- College of Medicine and Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - Padraig G Kelly
- College of Medicine and Veterinary Medicine, University of Edinburgh, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| |
Collapse
|
2
|
Tinkler SH, Villa L, Manfredi MT, Walshe N, Jahns H. First report of Besnoitia bennetti in Irish donkeys: an emerging parasitic disease in Europe. Ir Vet J 2024; 77:2. [PMID: 38355717 PMCID: PMC10865628 DOI: 10.1186/s13620-024-00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND This is the first report of Besnoitia bennetti in donkeys in Ireland. B. bennetti, an apicomplexan protozoan parasite specific to equids, is an emerging pathogen in Europe. This parasite forms chronic intracytoplasmic cysts in cells of the mesenchymal lineage, mainly fibroblasts, in the skin, sclera and mucosa. Clinical signs in affected equine hosts vary from mild to severe debilitating disease. Little is known of the phylogeny, epidemiology or transmission of B. bennetti infection in donkeys, mules or horses. CASE PRESENTATION Two cases of besnoitiosis in donkeys are presented. Both donkeys were born and raised in theSouthwest of Ireland. The first case was a 2.5-year-old donkey that had a suspect sarcoid removed, while the second case,a 2-year-old donkey, had a biopsy of nodular dermatitis of the muzzle. Diagnosis was made by histopathology and the parasite species, B. bennetti, was confirmed by PCR followed by sequencing and microsatellite analysis. Both donkeys had high antibody titres against Besnoitia spp. Small (0.5 mm) scleral, conjunctival and dermal cysts over the muzzle were subsequently observed in both animals. Treatment with trimethoprim sulfadiazine for 30 days did not lead to clinical resolution. The findings are compared to the cases of besnoitiosis in donkeys reported in the past 10 years throughout Europe. CONCLUSIONS Besnoitiosis should be considered as a differential diagnosis for chronic skin disease particularly in cases of cutaneous masses, non-pruritic dermatitis, and dermatitis that is not responsive to treatment in donkeys and other equids. Future studies are needed to investigate the prevalence of the disease in Irish donkeys, the spread of the disease and the potential impact on the health and welfare of the donkeys.
Collapse
Affiliation(s)
- Stacy H Tinkler
- Veterinary Department, The Donkey Sanctuary Ireland, Hannigan's Farm, Liscarroll, Mallow Co. Cork, Ireland
| | - Luca Villa
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi Di Milano, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Maria Teresa Manfredi
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi Di Milano, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Nicola Walshe
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04W6F6, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04W6F6, Ireland.
| |
Collapse
|
3
|
Gysens L, Vanmechelen B, Maes P, Martens A, Haspeslagh M. Complete genomic characterization of bovine papillomavirus type 1 and 2 strains infers ongoing cross-species transmission between cattle and horses. Vet J 2023; 298-299:106011. [PMID: 37336425 DOI: 10.1016/j.tvjl.2023.106011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Infection with bovine papillomavirus (BPV) types 1 and 2 results in the most common skin tumor of horses, termed equine sarcoid. The persistent and recurrent nature of this tumor stands in contrast to the regressive nature of BPV-1/- 2 induced cutaneous papillomas in cattle. The circulation of horse-specific BPV-1/- 2 variants within equine populations has been suggested as a possible explanation for the difference in clinical presentation of BPV-1/- 2 infection between horses and cattle. In order to investigate this hypothesis, we identified 98 complete BPV-1/- 2 genomes using a Nanopore sequencing approach. Separate BPV-1/- 2 alignments were used to infer Bayesian phylogenetic trees. Phylogeny-trait association concerning host species was investigated using Bayesian Tip-association Significance software (BaTS) Overall, 179 unique BPV-1 and 128 BPV-2 substitutions were found. The E2 coding region in the viral genome exhibited an exceptionally high rate of non-synonymous mutations (81 %, n = 13/16). Interestingly, extensive deletions in the L1/L2 region (up to 1.5 kb) were found exclusively in horse-derived samples. Nevertheless, the most frequently detected single nucleotide polymorphisms were shared between equine and bovine hosts, which is in agreement with BaTS results indicating no phylogeny-host correlation. We found indications that horse-specific mutations might exist in subpopulations of equine derived BPV-1/- 2, but these did not result in horse-adapted genetic variants. Based on these observations, cross-species transmission from cattle to horses seems to be an ongoing process, rather than an ancient occurrence that has been followed by the circulation of horse-adapted BPV variants in the horse population..
Collapse
Affiliation(s)
- L Gysens
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - B Vanmechelen
- KU Leuven - University of Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - P Maes
- KU Leuven - University of Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - A Martens
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Haspeslagh
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Jindra C, Hainisch EK, Brandt S. Immunotherapy of Equine Sarcoids—From Early Approaches to Innovative Vaccines. Vaccines (Basel) 2023; 11:vaccines11040769. [PMID: 37112681 PMCID: PMC10145708 DOI: 10.3390/vaccines11040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Horses and other equid species are frequently affected by bovine papillomavirus type 1 and/or 2 (BPV1, BPV2)-induced skin tumors termed sarcoids. Although sarcoids do not metastasize, they constitute a serious health problem due to their BPV1/2-mediated resistance to treatment and propensity to recrudesce in a more severe, multiple form following accidental or iatrogenic trauma. This review provides an overview on BPV1/2 infection and associated immune escape in the equid host and presents early and recent immunotherapeutic approaches in sarcoid management.
Collapse
|
5
|
Ogłuszka M, Starzyński RR, Pierzchała M, Otrocka-Domagała I, Raś A. Equine Sarcoids-Causes, Molecular Changes, and Clinicopathologic Features: A Review. Vet Pathol 2021; 58:472-482. [PMID: 33461443 DOI: 10.1177/0300985820985114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Equine sarcoid is the most common skin tumor of horses. Clinically, it occurs as a locally invasive, fibroblastic, wart-like lesion of equine skin, which has 6 clinical classes: occult, verrucose, nodular, fibroblastic, mixed, and malignant. Sarcoids may be single but multiple lesions are more frequent. The typical histological feature is increased density of dermal fibroblasts which form interlacing bundles and whorls within the dermis. Lesions are mostly persistent, resist therapy, and tend to recur following treatment. In general, sarcoids are not fatal but their location, size, and progression to the more aggressive form may lead to the withdrawal of a horse from use and serious infringement of their welfare leading to the loss of valuable animals. Bovine papillomavirus (BPV) type 1 and less commonly type 2 contribute to the development of equine sarcoid. The viral genome and proteins are detected in a high percentage of cases. Furthermore, viral oncoprotein activity leads to changes in the fibroblastic tissue similar to changes seen in other types of tumors. Equine sarcoids are characterized by a loss of tumor suppressor activity and changes allowing abnormal formation of the affected tissue, as well as y immune defense abnormalities that weaken the host's immune response. This impaired immune response to BPV infection appears to be crucial for the development of lesions that do not spontaneously regress, as occurs in BPV-infected cows.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | | | - Andrzej Raś
- 49674University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
6
|
Lawson AL, Pittaway CE, Sparrow RM, Balkwill EC, Coles GC, Tilley A, Wilson AD. Analysis of caecal mucosal inflammation and immune modulation during Anoplocephala perfoliata infection of horses. Parasite Immunol 2020; 41:e12667. [PMID: 31442318 DOI: 10.1111/pim.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
Anoplocephala perfoliata is the commonest equine tapeworm, the adult parasites are attached in groups close to the ileocaecal valve causing marked inflammatory pathology. This work aimed to characterize the nature of the in vivo mucosal immune response to A perfoliata, and to investigate the role of A perfoliata excretory-secretory components in modulating in vitro immune responses. Real-time PCR detected elevation of IL13 and TGFβ transcription in early-stage A perfoliata infection. In late-stage infection, IL-13, IL4 and Ifn transcripts were reduced while the regulatory cytokines, TGFβ, IL10 and the transcription factor FOXP3 were increased in tissue close to the site of A perfoliata attachment; indicating downregulation of T-cell responses to A perfoliata. In vitro, A perfoliata excretory-secretory products induced apoptosis of the Jurkat T-cell line and premature cell death of ConA stimulated equine peripheral blood leucocytes. Analysis of cytokine transcription patterns in the leucocyte cultures showed a marked inhibition of IL-1 and IL-2 suggesting that a lack of T-cell growth factor transcription underlies the mechanism of the induced equine T-cell death. These preliminary findings suggest A perfoliata may have the ability to down-regulate host T-cell responses.
Collapse
Affiliation(s)
- April L Lawson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - Charles E Pittaway
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - Richard M Sparrow
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - Emily C Balkwill
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - Gerald C Coles
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - Alice Tilley
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - A Douglas Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Koch C, Martens A, Hainisch E, Schüpbach G, Gerber V, Haspeslagh M. The clinical diagnosis of equine sarcoids — Part 1: Assessment of sensitivity and specificity using a multicentre case-based online examination. Vet J 2018; 242:77-82. [DOI: 10.1016/j.tvjl.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/05/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
8
|
Brandt S. Immune response to bovine papillomavirus type 1 in equine sarcoid. Vet J 2016; 216:107-8. [DOI: 10.1016/j.tvjl.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022]
|