1
|
Akter R, Masum MA, Biswas S, Rubel MZU, Sarkar SK, Islam MS, Golbar HM, Alam ME, Rakib MA, Isalm Khan MZ. Clarification of a unique mucosal vaccination route for improved systemic and mucosal immune response in broiler. Heliyon 2024; 10:e39621. [PMID: 39497952 PMCID: PMC11532882 DOI: 10.1016/j.heliyon.2024.e39621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
There are often outbreaks of infectious diseases on farms, which not only disrupt production but also cause significant economic losses. Vaccines are given to prevent the spread of these infectious diseases, but they produce only systemic antibodies or antibodies in the mucosa of a particular system. So, a new mucosal vaccination route is needed where the vaccine will produce antibodies in the systemic circulation as well as in the mucosa of many systems. In our study, the cloaca was targeted because it is associated with the mucosa of many systems. Whole-mount and routine histological staining show both lymphatic nodules and diffuse lymphatic tissues in the lamina propria of cloaca. These lymphatic tissues are made up of Bu-1+ B-cells, CD3+ T-cells, and KUL01+ macrophages and monocytes. So, this is a new mucosa-associated lymphoid tissue, named cloaca-associated lymphoid tissue (CALT). The CALT contains antigen-presenting cells (dendritic cells, macrophages, B cells, MHC II molecules, and T cells) and is equipped with blood vessels and high endothelial venules, which indicate its functional status. More antibodies were produced in the treatment group compared to the vehicle control group after administration of the infectious bursal disease (IBD) and the Newcastle disease (ND) vaccine through cloaca. In addition, the cloaca-associated route produces a higher number of antibodies than the other traditional routes, which reveals the uniqueness of this route. Cloacal-vaccinated chickens showed less damage to the follicle and epithelium of the bursa of Fabricius compared to other groups, indicating its lower cytotoxic effect. Therefore, the cloaca-associated mucosal vaccination route produces more antibodies than other mucosal vaccination routes, which will protect the chickens on the farm to a greater extent.
Collapse
Affiliation(s)
- Rupa Akter
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Abdul Masum
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Subrato Biswas
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Zahir Uddin Rubel
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Sujan Kumar Sarkar
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mohammad Saiful Islam
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Hossain M. Golbar
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Emtiaj Alam
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdur Rakib
- Quality Assurance, Beximco Pharmaceuticals Limited, Dhaka, 1700, Bangladesh
| | | |
Collapse
|
2
|
Guo X, Hu J, Yin G, Cai Y, Gao Z, Liu Y, Zhong M, Wang R, Feng X. The Immunomodulatory Function of Assembled Composite Nanopolypeptide Containing Bursal-Derived BP7 (CNPB7) in Promoting the Mucosal Immune Response within Poultry Immunization. Vaccines (Basel) 2024; 12:834. [PMID: 39203960 PMCID: PMC11360326 DOI: 10.3390/vaccines12080834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Mucosal immunity is the main defense line against respiratory disease pathogens. Newcastle disease and avian infectious bronchitis are common respiratory diseases in poultry. However, the mucosal immune response is not sufficiently activated and thus fails to achieve the ideal immune protection. Therefore, it is important to develop a suitable mucosal immune adjuvant to enhance the immune response of live vaccines. Here, the bursal-derived peptide BP7, β-glucan, and hyaluronic acid were selected as the adjuvant to be assembled into the composite nanopolypeptide adjuvant (CNPB7) with ultrasonic dispersion technology. The results showed that after optimizing assembly conditions, the optimal average particle size of nanoparticle CNPB7 was 514.9 nm and PDI was 0.298. To evaluate the non-specific immune responses of nanoparticle CNPB7, the chickens were immunized only with nanoparticle CNPB7. It was confirmed that nanoparticle CNPB7 enhanced the expression of CD3, CD4, CD80, and CD86 factors in the spleen lymphocyte from the chicken immunized with nanoparticle CNPB7. To investigate the mucosal immune response of nanoparticle CNPB7, the chickens were orally immunized with Newcastle disease virus (NDV)-infectious bronchitis virus (IBV) dual vaccines and CNPB7. The results proved that the levels of immunoglobulin SIgA, IL-4, IFN-γ, and IL-13 in the mucus samples from the respiratory and digestive tract in chicken immunized with nanoparticle CNPB7 and vaccines were significantly increased, compared to that of vaccine control. Finally, it was observed that nanoparticle CNPB7 promoted specific increased antibody productions against NDV and IBV in the immunized chicken. These results proved that the assembled nanoparticle CNPB7 could enhance the vaccination efficacy in chicken, which provided the experimental basis for the development of new adjuvants, and offered technical support for preventing virus transmission of avian diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhong
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiying Wang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
4
|
Zhang Z, Cai J, Hao S, Li C, Chen J, Li T, Feng X. Transcriptomic analysis of spleen B cell revealed the molecular basis of bursopentin on B cell differentiation. Vet Res 2022; 53:109. [PMID: 36517897 PMCID: PMC9753308 DOI: 10.1186/s13567-022-01123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022] Open
Abstract
The bursa of Fabricius, the acknowledged humoral immune organ unique to birds, plays a vital role in B cell development. Bursopentin (BP5) derived from the bursa is reported to induce the development and formation of B cells. However, the mechanism of BP5 on B cell differentiation is still unclear. In this paper, total B lymphocytes from mice immunized with H9N2 subtype AIV vaccine were stimulated with BP5. The results show that BP5 at the experimental dosages promoted B cell differentiation, including the total B cells, activated B cells, differentiated B cells, mature B cells and plasma cells. Then, the in vivo immune experiment proved that the percentages of activated and differentiated B cells from mice immunized with AIV vaccine and 0.25 mg/mL BP5 were increased. To investigate the molecular mechanism of BP5 on B cell differentiation, the gene expression profiles of B cells purified from the spleen cells of mice immunized with AIV vaccine and BP5 were detected following RNA sequencing technology. The results show that BP5 at 0.05 and 0.25 mg/mL induced the enrichment of various biological functions, and stimulated five common significant enrichment pathways in B cells from the immunized mice. Additionally, 120 and 59 differentially expressed genes (DEG) represented transcriptional factors in B cells following 0.05 and 0.25 mg/mL BP5 immunization, respectively. In summary, these results suggest that BP5 regulates various gene expression involved in regulation of B cell development, which provides the knowledge required for additional studies on B cell differentiation in response to bursal-derived peptides and also provides an important experimental basis for improving vaccine immunity.
Collapse
Affiliation(s)
- Ze Zhang
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaxi Cai
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shanshan Hao
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chenfei Li
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiajing Chen
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tongtong Li
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiuli Feng
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
5
|
Feng XL, Zheng Y, Zong MM, Hao SS, Zhou GF, Cao RB, Chen PY, Liu QT. Correction to: The immunomodulatory functions and molecular mechanism of a new bursal heptapeptide (BP7) in immune responses and immature B cells. Vet Res 2021; 52:23. [PMID: 33593407 PMCID: PMC7888180 DOI: 10.1186/s13567-020-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Man Zong
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang Fang Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Bing Cao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pu Yan Chen
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Tao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
6
|
Yu YN, Zheng Y, Hao SS, Zhang Z, Cai JX, Zong MM, Feng XL, Liu QT. The molecular evolutionary characteristics of new isolated H9N2 AIV from East China and the function of vimentin on virus replication in MDCK cells. Virol J 2020; 17:78. [PMID: 32552884 PMCID: PMC7302367 DOI: 10.1186/s12985-020-01351-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The low pathogenic H9N2 AIV caused the serious impact on the poultry industry and public safety. Our purpose was to investigate the molecular evolutionary characteristics of the new isolated H9N2 virus and investigate the intracellular target protein of H9N2 AIV replication in sensitive cells. METHODS AIV A/chicken/Shandong/LY1/2017 (H9N2) was isolated from the cloaca of the healthy chicken in Shandong, and the full-length eight gene segments of this isolated H9N2 AIV were amplified by RT-PCR and analyzed. MDCK cells were used as the target cell model, and VOPBA assay and LC-MS/MS were carried out to identify the virus-binding protein of H9N2 AIV. MDCK cells were pre-treated with the special antibody and siRNA, and treated with H9N2 AIV to detect the virus replication. Additionally, Vimentin-pcDNA3.0 was successfully constructed, and transinfected into MDCK cells, and then H9N2 AIV mRNA was detected with RT-PCR. RESULTS Phylogenetic analysis revealed that HA, NA, PB2, PB1, PA, NP and M seven genes of the isolated H9N2 AIV were derived from A/Chicken/Shanghai/F/98, while NS gene was derived from A/Duck/Hong Kong/Y439/97. The cleavage site sequence of HA gene of the isolated H9N2 AIV was a PARSSR G pattern, and the left side sequence (224 ~ 229) of receptor binding site was NGQQGR pattern, which were similar to that of A/Chicken/Shanghai/F/98. Following VOPBA assay, we found one protein of about 50KDa binding to H9N2 AIV, and the results of LC-MS/MS analysis proved that vimentin was the vital protein binding to H9N2 AIV. The pre-incubation of the specific antibody and siRNA decreased the viral RNA level in MDCK cells treated with H9N2 AIV. Furthermore, we found that over-expressed vimentin increased H9N2 AIV replication in MDCK cells. CONCLUSIONS These findings suggested that the isolated H9N2 AIV might be a recent clinical common H9N2 strain, and vimentin protein might be one vital factor for H9N2 AIV replication in MDCK cells, which might be a novel target for design and development of antiviral drug.
Collapse
Affiliation(s)
- Yuan Nan Yu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Xi Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Man Zong
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qing Tao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|