1
|
Qi PY, Zhang TH, Yang YK, Liang H, Feng YM, Wang N, Ding ZH, Xiang HM, Zhou X, Liu LW, Jin LH, Li XY, Yang S. Beyond the β-amino alcohols framework: identification of novel β-hydroxy pyridinium salt-decorated pterostilbene derivatives as bacterial virulence factor inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:4098-4109. [PMID: 38578108 DOI: 10.1002/ps.8116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS A series of novel β-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 μg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi-Ke Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zheng-Hao Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Kiššová Z, Mudroňová D, Link R, Tkáčiková Ľ. Immunomodulatory effect of probiotic exopolysaccharides in a porcine in vitro co-culture model mimicking the intestinal environment on ETEC infection. Vet Res Commun 2024; 48:705-724. [PMID: 37875712 PMCID: PMC10998797 DOI: 10.1007/s11259-023-10237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effect of EPS-L26 isolated from the probiotic strain Lactobacillus (Limosilactobacillus) reuteri L26 Biocenol™, in a model of infection with an enterotoxigenic E. coli (ETEC) by establishing monocultures consisting of the IPEC-J2 cell line or monocyte-derived dendritic cells (moDCs) and creating a 3D model of cell co-cultures established with IPEC-J2 cells and moDCs. The immunomodulatory and immunoprotective potential of used EPS-L26 was confirmed in monocultures in an experimental group of pretreated cells, where our study showed that pretreatment of cells with EPS-L26 and subsequent exposure to infection resulted in significantly down-regulated mRNA levels of genes encoding inflammatory cytokines compared to ETEC challenge in single cell cultures (in IPEC-J2, decreased mRNA levels for TNF-α, IL-6, IL-1β, IL-12p35; in moDCs, decreased mRNA levels for IL-1β). Similar to monocultures, we also demonstrated the immunostimulatory potential of the ETEC strain in the co-culture model on directly treated IPEC-J2 cells cultivated on insert chambers (apical compartment) and also on indirectly treated moDCs cultivated in the lower chamber (basolateral compartment), however in the co-culture model the expression of inflammatory cytokines was attenuated at the mRNA level compared to monocultures. Pretreatment of the cells on the insert chambers pointed to the immunoprotective properties of EPS-L26, manifested by decreased mRNA levels in both cell lines compared to ETEC challenge (in IPEC-J2 decreased mRNA levels for IL-12p35; in moDCs decreased mRNA levels for IL-1β, IL-6). Our results suggest intercellular communication via humoral signals derived from IPEC-J2 cells by influencing the gene expression of indirectly treated moDC cells located in the basolateral compartment.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Róbert Link
- Clinik of Swine, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| |
Collapse
|
3
|
Sundaram TS, Addis MF, Giromini C, Rebucci R, Pisanu S, Pagnozzi D, Baldi A. Comprehensive proteomic analysis reveals omega-3 fatty acids to counteract endotoxin-stimulated metabolic dysregulation in porcine enterocytes. Sci Rep 2023; 13:21595. [PMID: 38062040 PMCID: PMC10703801 DOI: 10.1038/s41598-023-48018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
4
|
Yu Z, Chen J, Liu Y, Meng Q, Liu H, Yao Q, Song W, Ren X, Chen X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front Microbiol 2023; 14:1095555. [PMID: 36819028 PMCID: PMC9932687 DOI: 10.3389/fmicb.2023.1095555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.
Collapse
Affiliation(s)
- Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Xin Chen ✉
| |
Collapse
|
5
|
Yang S, Xu X, Peng Q, Ma L, Qiao Y, Shi B. Exopolysaccharides from lactic acid bacteria, as an alternative to antibiotics, on regulation of intestinal health and the immune system. ANIMAL NUTRITION 2023; 13:78-89. [PMID: 37025257 PMCID: PMC10070398 DOI: 10.1016/j.aninu.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Over-use or misuse of antibiotics in livestock and poultry production contributes to the rising threat of antibiotic resistance in animals and has negative ecological effects. Exopolysaccharides from lactic acid bacteria (LAB-EPS) are a class of biological macromolecules which are secreted by lactic acid bacteria to the outside of the cell wall during their growth and metabolism. Numerous studies demonstrated that LAB-EPS have anti-inflammatory and antimicrobial activities and are able to regulate intestinal health and the immune system in livestock. They are biodegradable, nontoxic and bio-compatible, which are considered as ideal alternatives to antibiotics. This review aims to discuss and summarize recent research findings of LAB-EPS on regulation of intestinal health and the immune system in animals, and thus provide scientific justification for commercial applications of LAB-EPS in livestock.
Collapse
|
6
|
Kiššová Z, Tkáčiková Ľ, Mudroňová D, Bhide MR. Immunomodulatory Effect of Lactobacillus reuteri ( Limosilactobacillus reuteri) and Its Exopolysaccharides Investigated on Epithelial Cell Line IPEC-J2 Challenged with Salmonella Typhimurium. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121955. [PMID: 36556320 PMCID: PMC9788328 DOI: 10.3390/life12121955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The gastrointestinal tract is the largest and most complex component of the immune system. Each component influences the production and regulation of cytokines secreted by intestinal epithelial cells. The aim of this study was to see how the probiotic strain Limosilactobacillus reuteri L26 and its exopolysaccharide (EPS) affect porcine intestinal-epithelial cells IPEC-J2 infected with Salmonella Typhimurium. The results revealed that Salmonella infection up-regulated all studied pro-inflammatory cytokines such as TNF-α, IL-8, IL-6 and TLR4, TLR5 signaling pathways, while decreasing the expression of TGF-β. An immunosuppressive activity was found in EPS-treated wells, since the transcriptional levels of the studied pro-inflammatory cytokines were not increased, and the pretreatment with EPS was even able to attenuate up-regulated pro-inflammatory genes induced by Salmonella infection. However, there was a significant increase in the expression of mRNA levels of IL-8 and TNF-α in L26-treated cells, although this up-regulation was suppressed in the case of pretreatment. The immunoregulatory function of L. reuteri was also confirmed by the increased level of mRNA expression for TGF-β, a known immunosuppressive mediator. The most relevant finding of this ex vivo study was a case of immunity modulation, where the probiotic strain L. reuteri stimulated the innate immune-cell response which displayed both anti- and pro-inflammatory activities, and modulated the expression of TLRs in the IPEC-J2 cell line. Our findings also revealed that the pretreatment of cells with either EPS or live lactobacilli prior to infection has a suppressive effect on the inflammatory response induced by Salmonella Typhimurium.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Institute of Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
- Correspondence: (Z.K.); (Ľ.T.)
| | - Ľudmila Tkáčiková
- Institute of Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
- Correspondence: (Z.K.); (Ľ.T.)
| | - Dagmar Mudroňová
- Institute of Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Mangesh R. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| |
Collapse
|
7
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
8
|
Wu Q, Cui D, Chao X, Chen P, Liu J, Wang Y, Su T, Li M, Xu R, Zhu Y, Zhang Y. Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells. Front Vet Sci 2021; 8:677897. [PMID: 34447800 PMCID: PMC8383179 DOI: 10.3389/fvets.2021.677897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Defeng Cui
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chao
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Liu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yiding Wang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tongjian Su
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruyu Xu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonghong Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
9
|
Li Y, Jia Y, Cui T, Zhang J. IL-6/STAT3 signaling pathway regulates the proliferation and damage of intestinal epithelial cells in patients with ulcerative colitis via H3K27ac. Exp Ther Med 2021; 22:890. [PMID: 34194568 PMCID: PMC8237277 DOI: 10.3892/etm.2021.10322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect of the IL-6/STAT3 signaling pathway on intestinal epithelial barrier injury in patients with ulcerative colitis (UC). Fifty-two patients with UC and 21 healthy subjects were recruited. The expression level of IL-6 in plasma was determined by ELISA. Normal human colon mucosal epithelial NCM460 cells were treated with IL-6 or plasma from the patients with UC. Then, the transepithelial electrical resistance value, fluorescein yellow permeability and zonulin release were evaluated. Using reverse transcription-quantitative (q)PCR and western blotting, claudin (CLDN) 1 and CLDN2 expression levels were analyzed. Furthermore, western blotting was used to detect phosphorylation of STAT3. Chromatin immunoprecipitation-qPCR was performed to investigate the enrichment of H3K27ac in the promoter regions of CLDN1 and CLDN2. The present study revealed that IL-6 content was elevated in the plasma from patients with UC and increased with the progression of the disease. IL-6 was also observed to induce intestinal epithelial cell barrier injury and regulate barrier function by influencing the expression of tight junction-related proteins, as well as STAT3. The IL-6/STAT3 signaling pathway regulated transcription of CLDN1 and CLDN2 by affecting the enrichment of histone H3K27ac in their promoter regions. Thus, the significantly increased expression level of IL-6 in the peripheral blood of patients with UC indicates a positive association with the development of UC. Furthermore, the IL-6/STAT3 signaling pathway influences the function of the intestinal barrier by affecting the H3K27ac level in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yujie Jia
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tingfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiayuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
10
|
Zayed A, Mansour MK, Sedeek MS, Habib MH, Ulber R, Farag MA. Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Crit Rev Biotechnol 2021; 42:597-617. [PMID: 34320886 DOI: 10.1080/07388551.2021.1942779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteria exist in colonies as aggregates or associated with surfaces forming biofilms rather than planktonic cells. Living in such a unique manner is always mediated via a matrix of extracellular polymeric substances, which are composed mainly of polysaccharides or specifically exopolysaccharides (EPS). Biofilm formation and hence EPS production are affected by biotic and abiotic factors inducing/inhibiting several involved genes and other molecules. In addition, various aspects of bacterial EPS regarding: physiological functions, molecular weight, and chemical composition were demonstrated. Recent investigations have revealed a wide spectrum of EPS chemical and physicochemical properties showing promising applications in different industrial sectors. For instance, lactic acid bacteria (LAB)- and marine-derived EPS exhibit: immunomodulatory, antioxidant, antitumor, bioremediation of heavy metals, as well as thickening and viscosity modifiers in the food industry. However, bacterial EPS have not yet been commercially implemented, in contrast to plant-derived analogues. The current review aims to rediscover the EPS structural and biosynthetic features derived from marine and terrestrial bacteria, and applications as well.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt.,Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, National Organization for Drug Control and Research, Giza, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|