1
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
2
|
Abstract
This review covers the most important, accessible, and relevant literature published between April 2019 and April 2020 in the field of non-Helicobacter pylori Helicobacter species (NHPH). The initial part of the review covers new insights regarding the presence of gastric and enterohepatic NHPH in humans and animals, while the subsequent section focuses on the progress in our understanding of animal models, the pathogenicity and omics of these species. Over the last year, the clinical relevance of gastric NHPH infections in humans was highlighted. With regard to NHPH in animals, the ancestral source of Helicobacter suis was further established showing that Cynomolgus macaques are the common ancestor of the pig-associated H. suis population, and 3 novel Helicobacter species isolated from the gastric mucosa of red foxes were described. "Helicobacter burdigaliensis" sp nov. and "Helicobacter labetoulli" sp nov. were proposed as novel enterohepatic Helicobacter species associated with human digestive diseases. An analysis of Helicobacter cinaedi recurrent infections in humans proposed long-term antibiotic therapies. Several studies using rodent models further elucidated the mechanisms underlying the development of NHPH-related disease, as well as intestinal immunity in inflammatory bowel disease models. Omics approaches supported Helicobacteraceae taxonomy and unraveled the transcriptomic signatures of H. suis and Helicobacter heilmannii upon adherence to the human gastric epithelium. With regard to virulence, data showed that the nuclear remodeling promoted by cytolethal distending toxin of Helicobacters involves the MAFB oncoprotein and is associated with nucleoplasmic reticulum formation in surviving cells.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Armelle Menard
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, UMR1053, Bordeaux, France.,CHU de Bordeaux, Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et des Hélicobacters, Bordeaux, France
| |
Collapse
|