1
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Krátký J, Zajíčková M, Taki AC, Michel O, Matoušková P, Vokřál I, Štěrbová K, Vosála O, Lungerich B, Kurz T, Gasser RB, Harant K, Skálová L. New derivatives of benzhydroxamic acid with nematocidal activity against Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist 2025; 28:100599. [PMID: 40413827 DOI: 10.1016/j.ijpddr.2025.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/12/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Parasitic nematodes cause a wide range of diseases in animals, including humans. However, the efficacy of existing anthelmintic drugs, commonly used to treat these infections, is waning due to the increasing prevalence of drug resistance in nematode populations. This growing challenge underscores the urgent need to discover and develop novel nematocidal drugs that target new molecular pathways. In the present study, 13 novel derivatives of benzhydroxamic acid (OMKs) were designed and synthesized. Their anthelmintic activity was tested in the parasitic nematode Haemonchus contortus (barber's pole worm) and the free-living nematode Caenorhabditis elegans and potential toxicity assessed in mammalian models. Compound OMK211 showed the most promising results. It decreased viability and motility of larval and adult stages of both nematode species and of both drug-sensitive and drug-resistant strains of H. contortus at micromolar concentrations with the highest efficacy in H. contortus adult males (IC50 ∼ 1 μM). Moreover, OMK211 was not toxic in mammalians cells in vitro and in mice in vivo. Consequently, thermal proteome profiling analysis was used to infer the putative molecular target of OMK211 in H. contortus. The results revealed C2-domain containing protein A0A6F7Q0A8, encoded by gene HCON_00184,900, as an interacting partner of OMK211. Using advanced structural prediction and docking tools, this protein is considered an interesting putative molecular target of new nematocidal drugs as its orthologs are present in several nematodes but not in mammals. In conclusion, novel derivatives of benzhydroxamic acid represent a promising new class of potential anthelmintics, which deserve further testing.
Collapse
Affiliation(s)
- Josef Krátký
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Oliver Michel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Vosála
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Karel Harant
- Laboratory of Mass Spectrometry, BIOCEV, Faculty of Science, Charles University, Vestec u Prahy, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Vosála O, Krátký J, Matoušková P, Rychlá N, Štěrbová K, Raisová Stuchlíková L, Vokřál I, Skálová L. Biotransformation of anthelmintics in nematodes in relation to drug resistance. Int J Parasitol Drugs Drug Resist 2025; 27:100579. [PMID: 39827513 PMCID: PMC11787565 DOI: 10.1016/j.ijpddr.2025.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
Collapse
Affiliation(s)
- Ondřej Vosála
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic.
| |
Collapse
|
4
|
Zhuang Y, Xia R, Yang F, Xu Z, Liang G, Zhang R, Bao Y, Wang F. Effective Dose Reduction of Emamectin Benzoate Through Inhibition of Bx-SDR3 in Pine Wood Nematode Management. Int J Mol Sci 2025; 26:1679. [PMID: 40004142 PMCID: PMC11855115 DOI: 10.3390/ijms26041679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Pine wood nematodes (Bursaphelenchus xylophilus, PWNs) are a major threat to Pinus koraiensis in northeast China, and emamectin benzoate (EB) is commonly used for their control. Although high doses of EB can alleviate symptoms of pine wilt disease (PWD), they do not fully eradicate PWNs due to their detoxification mechanisms. This study investigates the content of EB in P. koraiensis and its efficacy in controlling PWNs after exogenous application of EB. We found that while EB significantly reduced PWN populations, it did not eliminate them. Transcriptomic analysis of PWNs treated with concentration at 20% (LC20) revealed that PWNs exhibit detoxification responses to low EB concentrations (LC20), driven by the Bx-SDR3 gene. RNA interference (RNAi)-mediated silencing of this gene decreased the detoxification ability of PWNs and enhanced the toxic effects of LC20 EB by 20.9%. These results highlight the key role of Bx-SDR3 in PWN detoxification and suggest that targeting this gene could improve the effectiveness of EB, offering a promising strategy for more efficient and eco-friendly pest management.
Collapse
Affiliation(s)
- Yuting Zhuang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Rui Xia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Fan Yang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Zhao Xu
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Guanjun Liang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Yue Bao
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
| | - Feng Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, Northeast Forestry University of Forestry, Harbin 150040, China; (Y.Z.); (R.X.); (F.Y.); (Z.X.); (G.L.); (R.Z.); (Y.B.)
- Key Laboratory of National Forestry and Grassland Administration on Northeast Area Forest and Grass Dangerous Peat Management and Control, Shenyang Institute of Technology, Shenyang 113122, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University of Forestry, Harbin 150040, China
| |
Collapse
|
5
|
Wang B, Wen R, Mao X, Chen J, Hao X. Unveiling the co-expression network and molecular targets behind rotenone resistance in the Bursaphelenchus xylophilus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117293. [PMID: 39541702 DOI: 10.1016/j.ecoenv.2024.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Bursaphelenchus xylophilus is a pathogenic nematode responsible for pine wilt disease, which can cause the demise of pine trees and discoloration of trunks. As rotenone is an important botanical pesticide, its impact on B. xylophilus was investigated through RNA-seq to understand the response mechanism of nematode. The bioassay results yielded the 12-h LC30 (1.35 mg L-1) and LC50 (2.60 mg L-1) values for rotenone. Differential gene expression analysis identified 172 and 614 differentially expressed genes (DEGs) in B. xylophilus exposed to two different concentrations of rotenone (1.35 and 2.60 mg L-1). To validate these findings, the expression patterns of 10 DEGs were confirmed through RT-qPCR. Additionally, all DEGs were categorized into eight gene expression profiles using STEM. Notably, the gene ontology (GO) processes of "single-organism process," "metabolic process," and "catalytic activity" were prominently enriched in rotenone-treated samples, suggesting a role for metabolic and catalytic pathways in the nematode's response to rotenone stress. KEGG pathways related to "carbon metabolism," "drug metabolism-cytochrome P450," and "metabolism of xenobiotics by cytochrome P450" were similarly enriched, indicating potential mechanisms for detoxification resistance and oxidative stress resistance. The analysis pointed to the pivotal roles of detoxification- and oxidoreduction-related genes, as well as signal transduction-related genes, in enabling B. xylophilus to adapt to rotenone exposure. These insights could markedly enhance our understanding of nematode resistance mechanisms and potentially inform the development of more effective rotenone-based strategies for controlling B. xylophilus.
Collapse
Affiliation(s)
- Buyong Wang
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Rongrong Wen
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Xuenan Mao
- Wageningen University & Research, Wageningen 6700 HB, the Netherlands
| | - Jie Chen
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| | - Xin Hao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
6
|
Štěrbová K, Raisová Stuchlíková L, Rychlá N, Kohoutová K, Babičková M, Skálová L, Matoušková P. Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole. Int J Parasitol Drugs Drug Resist 2024; 25:100555. [PMID: 38996597 PMCID: PMC11296255 DOI: 10.1016/j.ijpddr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Kateřina Kohoutová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Markéta Babičková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Rychlá N, Navrátilová M, Kohoutová E, Raisová Stuchlíková L, Štěrbová K, Krátký J, Matoušková P, Szotáková B, Skálová L. Flubendazole carbonyl reduction in drug-susceptible and drug-resistant strains of the parasitic nematode Haemonchus contortus: changes during the life cycle and possible inhibition. Vet Res 2024; 55:7. [PMID: 38225645 PMCID: PMC10790374 DOI: 10.1186/s13567-023-01264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.
Collapse
Affiliation(s)
- Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Eliška Kohoutová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic.
| |
Collapse
|