1
|
Mori K, Seike T, Okahashi N, Takahashi T, Matsuda F. Comparative metabolome analysis of sake yeast with enhanced fermentation performance in sake fermentation conditions. J Biosci Bioeng 2025:S1389-1723(25)00081-7. [PMID: 40288942 DOI: 10.1016/j.jbiosc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Japanese sake is fermented with specific strains of budding yeast Saccharomyces cerevisiae. Sake yeasts can allow the ethanol concentration of sake to exceed 20 % without distillation. While the genetic mutations responsible for these exceptional properties have been investigated, the underlying metabolism has not been fully explored. It is because yeast cells cultured in sake mash are difficult to collect for metabolome analysis. This study aimed to clarify the metabolic differences of K701 sake yeast and the X2180 diploid laboratory strain when cultured under sake fermentation conditions. To find an alternative medium that mimics sake fermentation and is applicable to measurements of intracellular metabolome, we compared three liquid media, including SD2 medium (synthetic dextrose medium containing 2 % glucose), SD20 medium (synthetic dextrose medium containing 20 % glucose and 1.8 % lactic acid) and pseudo-sake medium (a supernatant of saccharified rice supplemented with 1.8 % lactic acid). Culture profile data demonstrated that the pseudo-sake medium successfully reproduced the metabolic traits of K701 observed in sake mash. Targeted metabolome analysis of yeast cells cultured in the pseudo-sake medium revealed that levels of glycolytic metabolites, such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and fructose-1,6-bisphosphate (FBP), were significantly higher with K701. Based on metabolite concentration data, we inferred that K701 cells had a higher ATP regeneration rate. Calculation of differential Gibbs free energy changes revealed that the glucokinase reaction was upregulated in K701. The present study has, for the first time, revealed the metabolism of K701 sake yeast responsible for its exceptional fermentation ability under sake fermentation conditions.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan
| | - Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshinari Takahashi
- General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Duncan JD, Devillers H, Camarasa C, Setati ME, Divol B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol 2024; 124:104624. [PMID: 39244375 DOI: 10.1016/j.fm.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hugo Devillers
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
3
|
Muhl JR, Pilkington LI, Fedrizzi B, Deed RC. Insights into the relative contribution of four precursors to 3-sulfanylhexan-1-ol and 3-sulfanylhexylacetate biogenesis during fermentation. Food Chem 2024; 449:139193. [PMID: 38604037 DOI: 10.1016/j.foodchem.2024.139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
The desirable wine aroma compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) are released during fermentation from non-volatile precursors present in the grapes. This work explores the relative contribution of four precursors (E-2-hexenal, 3-S-glutathionylhexan-1-ol, 3-S-glutathionylhexanal, and 3-S-cysteinylhexan-1-ol) to 3SH and 3SHA. Through the use of isotopically labelled analogues of these precursors in defined fermentation media, new insights into the role of each precursor have been identified. E-2-Hexenal was shown to contribute negligible amounts of thiols, while 3-S-glutathionylhexan-1-ol was the main precursor of both 3SH and 3SHA. The glutathionylated precursors were both converted to 3SHA more efficiently than 3-S-cysteinylhexan-1-ol. Interestingly, 3-S-glutathionylhexanal generated 3SHA without detectable concentrations of 3SH, suggesting possible differences in the way this precursor is metabolised compared to 3-S-glutathionylhexan-1-ol and 3-S-cysteinylhexan-1-ol. We also provide the first evidence for chemical conversion of 3-S-glutathionylhexan-1-ol to 3-S-(γ-glutamylcysteinyl)-hexan-1-ol in an oenological system.
Collapse
Affiliation(s)
- Jennifer R Muhl
- School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland, New Zealand.
| | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland, New Zealand; Te Pūnaha Matatini, Auckland 1010, New Zealand.
| | - Bruno Fedrizzi
- School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland, New Zealand.
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland, New Zealand; School of Biological Sciences, The University of Auckland | Waipapa Taumata Rau, 3 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
4
|
Evers MS, Ramousse L, Morge C, Sparrow C, Gobert A, Roullier-Gall C, Alexandre H. To be or not to be required: Yeast vitaminic requirements in winemaking. Food Microbiol 2023; 115:104330. [PMID: 37567622 DOI: 10.1016/j.fm.2023.104330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023]
Abstract
Although vitamins are prime actors in yeast metabolism, the nature and the extent of their requirement in Saccharomyces cerevisiae in winemaking remains little understood. To fill this gap, the evolution of 8 water-soluble vitamins and their diverse vitamers during its alcoholic fermentation in a synthetic must medium was monitored, providing the first evidence of the consumption of vitamers by five commercial S. cerevisiae strains, and highlighting the existence of preferential vitameric sources for its nutrition. The vitamins required by the yeast, B1, B5, and B8, were then identified, and the nature of their requirement characterized, strongly asserting the required trait of B1 for fermentation, B8 for growth, and B5 for both processes. The extent of the requirement for B5, that with the most impact of the three vitamins, was then quantified in three S. cerevisiae strains, resulting in the conclusion that 750 μg.L-1 should prove sufficient to cover the yeast's requirements. This investigation offers the first insight into S. cerevisiae vitaminic requirements for winemaking.
Collapse
Affiliation(s)
- Marie Sarah Evers
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Louise Ramousse
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Christophe Morge
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Celine Sparrow
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Antoine Gobert
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Chloé Roullier-Gall
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France.
| |
Collapse
|
5
|
Furutani N, Izawa S. Adaptability of wine yeast to ethanol-induced protein denaturation. FEMS Yeast Res 2022; 22:6831633. [PMID: 36385376 DOI: 10.1093/femsyr/foac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
This year marks the 200th anniversary of the birth of Dr Louis Pasteur (1822-1895), who revealed that alcoholic fermentation is performed by yeast cells. Subsequently, details of the mechanisms of alcoholic fermentation and glycolysis in yeast cells have been elucidated. However, the mechanisms underlying the high tolerance and adaptability of yeast cells to ethanol are not yet fully understood. This review presents the response and adaptability of yeast cells to ethanol-induced protein denaturation. Herein, we describe the adverse effects of severe ethanol stress on intracellular proteins and the responses of yeast cells. Furthermore, recent findings on the acquired resistance of wine yeast cells to severe ethanol stress that causes protein denaturation are discussed, not only under laboratory conditions, but also during the fermentation process at 15°C to mimic the vinification process of white wine.
Collapse
Affiliation(s)
- Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiol Spectr 2022; 10:e0090122. [PMID: 36040149 PMCID: PMC9603993 DOI: 10.1128/spectrum.00901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Under laboratory conditions, acute 10% (vol/vol) ethanol stress causes protein denaturation and accumulation of insoluble proteins in yeast cells. However, yeast cells can acquire resistance to severe ethanol stress by pretreatment with mild ethanol stress (6% vol/vol) and mitigate insoluble protein accumulation under subsequent exposure to 10% (vol/vol) ethanol. On the other hand, protein quality control (PQC) of yeast cells during winemaking remains poorly understood. Ethanol concentrations in the grape must increase gradually, rather than acutely, to more than 10% (vol/vol) during the winemaking process. Gradual increases in ethanol evoke two possibilities for yeast PQC under high ethanol concentrations in the must: suppression of insoluble protein accumulation through the acquisition of resistance or the accumulation of denatured insoluble proteins. We examined these two possibilities by conducting alcoholic fermentation tests at 15°C that mimic white winemaking using synthetic grape must (SGM). The results obtained revealed the negligible accumulation of insoluble proteins in wine yeast cells throughout the fermentation process. Furthermore, wine yeast cells in fermenting SGM did not accumulate insoluble proteins when transferred to synthetic defined (SD) medium containing 10% (vol/vol) ethanol. Conversely, yeast cells cultured in SD medium accumulated insoluble proteins when transferred to fermented SGM containing 9.8% (vol/vol) ethanol. Thus, wine yeast cells acquire resistance to the cellular impact of severe ethanol stress during fermentation and mitigate the accumulation of insoluble proteins. This study provides novel insights into the PQC and robustness of wine yeast during winemaking. IMPORTANCE Winemaking is a dynamic and complex process in which ethanol concentrations gradually increase to reach >10% (vol/vol) through alcoholic fermentation. However, there is little information on protein damage in wine yeast during winemaking. We investigated the insoluble protein levels of wine yeast under laboratory conditions in SD medium and during fermentation in SGM. Under laboratory conditions, wine yeast cells, as well as laboratory strain cells, accumulated insoluble proteins under acute 10% (vol/vol) ethanol stress, and this accumulation was suppressed by pretreatment with 6% (vol/vol) ethanol. During the fermentation process, insoluble protein levels were maintained at low levels in wine yeast even when the SGM ethanol concentration exceeded 10% (vol/vol). These results indicate that the progression of wine yeast through fermentation in SGM results in stress tolerance, similar to the pretreatment of cells with mild ethanol stress. These findings further the understanding of yeast cell physiology during winemaking.
Collapse
|
7
|
Scarano L, Mazzone F, Mannerucci F, D’Amico M, Bruno GL, Marsico AD. Preliminary Studies on the In Vitro Interactions Between the Secondary Metabolites Produced by Esca-Associated Fungi and Enological Saccharomyces cerevisiae Strains. PLANTS 2022; 11:plants11172277. [PMID: 36079659 PMCID: PMC9459945 DOI: 10.3390/plants11172277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Esca-affected vines alter the carbohydrate metabolism, xylem transport of water and photosynthesis and show regular grapes (but berries do not reach maturity), and phenolic compounds are reduced in concentration, oxidate and polymerizate. Pullulan and a mixture of scytalone and isosclerone (9:1; w/w), secondary metabolites produced in vitro and in planta by Phaeoacremonium minimum (syn. P. aleophilum) and Phaeomoniella chlamydospora, were assayed against the strains Byosal HS1 and IOC 18-2007 in microvinifications with synthetic grape must. The presence of pullulan and pentaketides mix affects the growth and metabolism of the tested Saccharomyces cerevisiae strains. Assays at 100 and 1000 µg mL−1 inhibited the growth of both strains, while no effects were recorded when evaluated at 1 and 5 µg mL−1. In comparison with the controls, pullulan and the scytalone/isosclerone mixture at 10 µg mL−1 had a growth reduction, a lower alcohol yield, reduced the concentration of tartaric acid and malic acid; and slowed down the production of lactic acid, acetic acid and total polyphenol content of the tested S. cerevisiae strains. These metabolites could be applied as an alternative to the sulfite addition in the early stages of vinification to support the action of selected Saccharomyces. Appealing is the subtractive action of pullulan against tartaric acid. Further data are needed to confirm and validate the enological performance in freshly pressed grape juice.
Collapse
Affiliation(s)
- Leonardo Scarano
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mazzone
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mannerucci
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Margherita D’Amico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Correspondence:
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| |
Collapse
|
8
|
Application of Cool Fermentation Temperatures to Encourage Non-Saccharomyces Yeasts to Yield Lower Ethanol Concentrations in Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Application of cool temperatures were studied to encourage Metschnikowia pulcherrima P01A016 and Meyerozyma guilliermondii P40D002 prior inoculation of Saccharomyces cerevisiae D254 to lower ultimate ethanol concentrations achieved. Merlot grape must was distributed into 300 L temperature-controlled tanks and inoculated with non-Saccharomyces yeasts three days before S. cerevisiae. For control fermentations, S. cerevisiae was inoculated with maximum temperatures set to 25 °C (temperature regime I) while those with Mt. pulcherrima or My. guilliermondii were initially set to 15 °C (temperature regime II) or 17.5 °C (temperature regime III) before increasing to 25 °C after adding S. cerevisiae. Once fermentations achieved dryness (≤2 g/L residual sugar), wines were bottled and stored for six months at 7 °C before sensory analysis. Ethanol reduction by Mt. pulcherrima was not observed in wines fermented under II but was by III (0.8% v/v). In contrast, musts inoculated with My. guilliermondii yielded wines with ethanol concentrations lowered by 0.3% (II) or 0.4% v/v (III). Sensory panelists found wines with Mt. pulcherrima to express lower sensory scores for ‘hotness’, ‘bitterness’, and ‘ethanol’ flavor with fewer differences noted for My. guilliermondii. Reducing final ethanol concentrations of Merlot wines were achieved by Mt. pulcherrima or My. guilliermondii using cooler initial fermentation temperatures without adversely affecting final wine quality.
Collapse
|
9
|
Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022; 11:foods11010109. [PMID: 35010235 PMCID: PMC8750221 DOI: 10.3390/foods11010109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products.
Collapse
|
10
|
Mechanisms of Metabolic Adaptation in Wine Yeasts: Role of Gln3 Transcription Factor. FERMENTATION 2021. [DOI: 10.3390/fermentation7030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wine strains of Saccharomyces cerevisiae have to adapt their metabolism to the changing conditions during their biotechnological use, from the aerobic growth in sucrose-rich molasses for biomass propagation to the anaerobic fermentation of monosaccharides of grape juice during winemaking. Yeast have molecular mechanisms that favor the use of preferred carbon and nitrogen sources to achieve such adaptation. By using specific inhibitors, it was determined that commercial strains offer a wide variety of glucose repression profiles. Transcription factor Gln3 has been involved in glucose and nitrogen repression. Deletion of GLN3 in two commercial wine strains produced different mutant phenotypes and only one of them displayed higher glucose repression and was unable to grow using a respiratory carbon source. Therefore, the role of this transcription factor contributes to the variety of phenotypic behaviors seen in wine strains. This variability is also reflected in the impact of GLN3 deletion in fermentation, although the mutants are always more tolerant to inhibition of the nutrient signaling complex TORC1 by rapamycin, both in laboratory medium and in grape juice fermentation. Therefore, most aspects of nitrogen catabolite repression controlled by TORC1 are conserved in winemaking conditions.
Collapse
|
11
|
Guzzon R, Roman T, Larcher R, Francesca N, Guarcello R, Moschetti G. Biodiversity and oenological attitude of Saccharomyces cerevisiae strains isolated in the Montalcino district: biodiversity of S. cerevisiae strains of Montalcino wines. FEMS Microbiol Lett 2021; 368:6123716. [PMID: 33512473 DOI: 10.1093/femsle/fnaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
The biodiversity of Saccharomyces cerevisiae was studied in the Montalcino area (Italy). Two wineries were involved in the study, which compared the genotypic and oenological characteristics of the S. cerevisiae strains isolated in spontaneous fermentations. After isolation yeasts were identified by 26S rRNA gene sequence analysis, and S. cerevisiae strains were characterized through interdelta sequence analysis (ISA). Oenological tests were performed in synthetic grape must by varying the magnitude of the main wine-imiting factors. The evolution of alcoholic fermentation was monitored by measuring sugar consumption and flow cytometry. The results revealed the prevalence of S. cerevisiae from the third day of fermentation and the presence of a wide range of S. cerevisiae strains having ISA profiles characteristic of each winery. From an oenological point of view, the features of such strains, in terms of resistance to wine-limiting factors, seemed to be linked to the main oenological variables applied in the production process of each winery. Extreme fermentation temperatures and copper residues are the variables that mostly depress the yeast population, in terms of fermentation rate and cell viability. Flow cytometry revealed the different impact of limiting factors on the viability of yeast by the quantification of the ratio between live/dead yeast cells of each strain, suggesting different mechanisms of inhibition, for instance stuck of cell growth or cell killing, in response to the different stress factors.
Collapse
Affiliation(s)
- Raffaele Guzzon
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Tomas Roman
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Roberto Larcher
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Nicola Francesca
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| | - Rosa Guarcello
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| | - Giancarlo Moschetti
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| |
Collapse
|
12
|
Karaoglan HA, Ozcelik F, Musatti A, Rollini M. Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods 2021; 10:foods10051129. [PMID: 34069532 PMCID: PMC8160661 DOI: 10.3390/foods10051129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The present research investigates the effect of different pretreatments on glucose and fructose consumption and ethanol production by four Saccharomyces cerevisiae wine strains, three isolated and identified from different wine regions in Turkey and one reference strain. A mild stress temperature (45 °C, 1 h) and the presence of ethanol (14% v/v) were selected as pretreatments applied to cell cultures prior to the fermentation step in synthetic must. The goodness fit of the mathematical models was estimated: linear, exponential decay function and sigmoidal model were evaluated with the model parameters R2 (regression coefficient), RMSE (root mean square error), MBE (mean bias error) and χ2 (reduced Chi-square). Sigmoidal function was determined as the most suitable model with the highest R2 and lower RMSE values. Temperature pretreatment allowed for an increase in fructose consumption rate by two strains, evidenced by a t90 value 10% lower than the control. One of the indigenous strains showed particular promise for mild temperature treatment (45 °C, 1 h) prior to the fermentation step to reduce residual glucose and fructose in wine. The described procedure may be effective for indigenous yeasts in preventing undesirable sweetness in wines.
Collapse
Affiliation(s)
| | - Filiz Ozcelik
- Department of Food Engineering, Ankara University, Ankara 06830, Turkey;
| | - Alida Musatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milano, Italy;
| | - Manuela Rollini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-025-0319-150
| |
Collapse
|
13
|
Pereira C, Mendes D, Dias T, Garcia R, da Silva MG, Cabrita MJ. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. J Chromatogr A 2021; 1641:461991. [PMID: 33640805 DOI: 10.1016/j.chroma.2021.461991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
The importance of yeasts in aroma production during wine fermentation is a significant concern for obtaining a wine that appraises a broad number of consumers. For wine producers, wine aroma modulation is an essential issue where the yeasts used during the winemaking process represents a feasible way to improve the complexity and enhance wines specific characteristics. During the fermentation process of wines, yeasts convert grapes sugars into alcohol, carbon dioxide and a large number of secondary metabolites, depending on yeast metabolism, affecting the wine composition, namely its aroma and amino acids (AAs) composition. So, the present work aims to study the effect of different Saccharomyces-type yeasts on the AAs composition and volatile profile of Arinto white wines. To pursue this goal, four white wines from Arinto grapes were fermented with three different commercial yeasts (Saccharomyces bayanus EC1118, Saccharomyces cerevisiae CY3079, Saccharomyces bayanus QA23) and one Native yeast. Arinto wines AAs composition was quantified by HPLC-DAD, after a derivatization step to obtain the aminoenone derivatives. The volatile content of Arinto wines was determined by GC/MS, after an HS-SPME extraction. Results showed significant differences among the AAs content and volatile profile in the Arinto wines. The higher AAs content was found in the Arinto wines fermented with the CY3079 yeast (470.74 mg•L-1), and the lowest content of AAs in the Arinto wines fermented with EC1118 yeast (343.06 mg•L-1). Native yeast results in wines with a volatile profile richer in esters compared to the other sample wines. Principal component analysis (PCA) obtained with combined data of AAs and volatile compounds, after normalization, for each Arinto wine samples, shows a clear separation of wines fermented with Native and CY3079 yeasts in relation to QA23 and EC1118 fermented wines . The first and second principal components are responsible for 44.40% and 32.20%, respectively, of the system's variance, which clearly showed a differentiation among wines.
Collapse
Affiliation(s)
- Catarina Pereira
- MED - Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Davide Mendes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Thomas Dias
- MED - Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Raquel Garcia
- MED - Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal
| | - Marco Gomes da Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Cabrita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal.
| |
Collapse
|
14
|
Nguyen THM, Sondhi S, Ziesel A, Paliwal S, Fiumera HL. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae. BMC Evol Biol 2020; 20:128. [PMID: 32977769 PMCID: PMC7517635 DOI: 10.1186/s12862-020-01685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial function requires numerous genetic interactions between mitochondrial- and nuclear- encoded genes. While selection for optimal mitonuclear interactions should result in coevolution between both genomes, evidence for mitonuclear coadaptation is challenging to document. Genetic models where mitonuclear interactions can be explored are needed. RESULTS We systematically exchanged mtDNAs between 15 Saccharomyces cerevisiae isolates from a variety of ecological niches to create 225 unique mitochondrial-nuclear genotypes. Analysis of phenotypic profiles confirmed that environmentally-sensitive interactions between mitochondrial and nuclear genotype contributed to growth differences. Exchanges of mtDNAs between strains of the same or different clades were just as likely to demonstrate mitonuclear epistasis although epistatic effect sizes increased with genetic distances. Strains with their original mtDNAs were more fit than strains with synthetic mitonuclear combinations when grown in media that resembled isolation habitats. CONCLUSIONS This study shows that natural variation in mitonuclear interactions contributes to fitness landscapes. Multiple examples of coadapted mitochondrial-nuclear genotypes suggest that selection for mitonuclear interactions may play a role in helping yeasts adapt to novel environments and promote coevolution.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Sargunvir Sondhi
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Andrew Ziesel
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
15
|
Torrellas M, Rozès N, Aranda A, Matallana E. Basal catalase activity and high glutathione levels influence the performance of non-Saccharomyces active dry wine yeasts. Food Microbiol 2020; 92:103589. [PMID: 32950173 DOI: 10.1016/j.fm.2020.103589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Non-Saccharomyces wine yeasts are useful tools for producing wines with complex aromas or low ethanol content. Their use in wine would benefit from their production as active dry yeast (ADY) starters to be used as co-inocula alongside S. cerevisiae. Oxidative stress during biomass propagation and dehydration is a key factor in determining ADY performance, as it affects yeast vitality and viability. Several studies have analysed the response of S. cerevisiae to oxidative stress under dehydration conditions, but not so many deal with non-conventional yeasts. In this work, we analysed eight non-Saccharomyces wine yeasts under biomass production conditions and studied oxidative stress parameters and lipid composition. The results revealed wide variability among species in their technological performance during ADY production. Also, for Metschnikowia pulcherrima and Starmerella bacillaris, better performance correlates with high catalase activity and glutathione levels. Our data suggest that non-Saccharomyces wine yeasts with an enhanced oxidative stress response are better suited to grow under ADY production conditions.
Collapse
Affiliation(s)
- Max Torrellas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Spain.
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Eliodório KP, Cunha GCDGE, Müller C, Lucaroni AC, Giudici R, Walker GM, Alves SL, Basso TO. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:61-119. [PMID: 31677647 DOI: 10.1016/bs.aambs.2019.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts have a long-standing relationship with humankind that has widened in recent years to encompass production of diverse foods, beverages, fuels and medicines. Here, key advances in the field of yeast fermentation applied to alcohol production, which represents the predominant product of industrial biotechnology, will be presented. More specifically, we have selected industries focused in producing bioethanol, beer and wine. In these bioprocesses, yeasts from the genus Saccharomyces are still the main players, with Saccharomyces cerevisiae recognized as the preeminent industrial ethanologen. However, the growing demand for new products has opened the door to diverse yeasts, including non-Saccharomyces strains. Furthermore, the development of synthetic media that successfully simulate industrial fermentation medium will be discussed along with a general overview of yeast fermentation modeling.
Collapse
Affiliation(s)
| | | | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ana Carolina Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil
| | | | - Sérgio Luiz Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Thiago Olitta Basso
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans. FEMS Microbiol Ecol 2019; 95:5550729. [DOI: 10.1093/femsec/fiz126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/14/2019] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT
The response of Saccharomyces cerevisiae to cocultivation with Lachancea thermotolerans during alcoholic fermentations has been investigated using tandem mass tag (TMT)-based proteomics. At two key time-points, S. cerevisiae was sorted from single S. cerevisiae fermentations and from mixed fermentations using flow cytometry sorting. Results showed that the purity of sorted S. cerevisiae was above 96% throughout the whole mixed-culture fermentation, thereby validating our sorting methodology. By comparing protein expression of S. cerevisiae with and without L. thermotolerans, 26 proteins were identified as significantly regulated proteins at the early death phase (T1), and 32 significantly regulated proteins were identified at the late death phase (T2) of L. thermotolerans in mixed cultures. At T1, proteins involved in endocytosis, increasing nutrient availability, cell rescue and resistance to stresses were upregulated, and proteins involved in proline synthesis and apoptosis were downregulated. At T2, proteins involved in protein synthesis and stress responses were up- and downregulated, respectively. These data indicate that S. cerevisiae was stressed by the presence of L. thermotolerans at T1, using both defensive and fighting strategies to keep itself in a dominant position, and that it at T2 was relieved from stress, perhaps increasing its enzymatic machinery to ensure better survival.
Collapse
|
18
|
Bagheri B, Zambelli P, Vigentini I, Bauer FF, Setati ME. Investigating the Effect of Selected Non- Saccharomyces Species on Wine Ecosystem Function and Major Volatiles. Front Bioeng Biotechnol 2018; 6:169. [PMID: 30483500 PMCID: PMC6243112 DOI: 10.3389/fbioe.2018.00169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Natural alcoholic fermentation is initiated by a diverse population of several non-Saccharomyces yeast species. However, most of the species progressively die off, leaving only a few strongly fermentative species, mainly Saccharomyces cerevisiae. The relative performance of each yeast species is dependent on its fermentation capacity, initial cell density, ecological interactions as well as tolerance to environmental factors. However, the fundamental rules underlying the working of the wine ecosystem are not fully understood. Here we use variation in cell density as a tool to evaluate the impact of individual non-Saccharomyces wine yeast species on fermentation kinetics and population dynamics of a multi-species yeast consortium in synthetic grape juice fermentation. Furthermore, the impact of individual species on aromatic properties of wine was investigated, using Gas Chromatography-Flame Ionization Detector. Fermentation kinetics was affected by the inoculation treatment. The results show that some non-Saccharomyces species support or inhibit the growth of other non-Saccharomyces species in the multi-species consortium. Overall, the fermentation inoculated with a high cell density of Starmerella bacillaris displayed the fastest fermentation kinetics while fermentation inoculated with Hanseniaspora vineae showed the slowest kinetics. The production of major volatiles was strongly affected by the treatments, and the aromatic signature could in some cases be linked to specific non-Saccharomyces species. In particular, Wickerhamomyces anomalus at high cell density contributed to elevated levels of 2-Phenylethan-1-ol whereas Starm. bacillaris at high cell density resulted in the high production of 2-methylpropanoic acid and 3-Hydroxybutanone. The data revealed possible direct and indirect influences of individual non-Saccharomyces species within a complex consortium, on wine chemical composition.
Collapse
Affiliation(s)
- Bahareh Bagheri
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Paolo Zambelli
- Department of Food, Environmental and Nutritional Sciences, University Degli Studi di Milano, Milan, Italy
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, University Degli Studi di Milano, Milan, Italy
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Lino FSDO, Basso TO, Sommer MOA. A synthetic medium to simulate sugarcane molasses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:221. [PMID: 30127851 PMCID: PMC6086992 DOI: 10.1186/s13068-018-1221-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Developing novel microbial cell factories requires careful testing of candidates under industrially relevant conditions. However, this frequently occurs late during the strain development process. The availability of laboratory media that simulate industrial-like conditions might improve cell factory development, as they allow for strain construction and testing in the laboratory under more relevant conditions. While sugarcane molasses is one of the most important substrates for the production of biofuels and other bioprocess-based commodities, there are no defined media that faithfully simulate it. In this study, we tested the performance of a new synthetic medium simulating sugarcane molasses. RESULTS Laboratory scale simulations of the Brazilian ethanol production process, using both sugarcane molasses and our synthetic molasses (SM), demonstrated good reproducibility of the fermentation performance, using yeast strains, PE-2 and Ethanol Red™. After 4 cycles of fermentation, the final ethanol yield (gp gs-1) values for the SM ranged from 0.43 ± 0.01 to 0.44 ± 0.01 and from 0.40 ± 0.01 to 0.46 ± 0.01 for the molasses-based fermentations. The other fermentation parameters (i.e., biomass production, yeast viability, and glycerol and acetic acid yield) were also within similar value ranges for all the fermentations. Sequential pairwise competition experiments, comparing industrial and laboratory yeast strains, demonstrated the impact of the media on strain fitness. After two sequential cocultivations, the relative abundance of the laboratory yeast strain was 5-fold lower in the SM compared to the yeast extract-peptone-dextrose medium, highlighting the importance of the media composition on strain fitness. CONCLUSIONS Simulating industrial conditions at laboratory scale is a key part of the efficient development of novel microbial cell factories. In this study, we have developed a synthetic medium that simulated industrial sugarcane molasses media. We found good agreement between the synthetic medium and the industrial media in terms of the physiological parameters of the industrial-like fermentations.
Collapse
Affiliation(s)
- Felipe Senne de Oliveira Lino
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitovert 220, 2800 Kongens Lyngby, Denmark
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Professor Lineu Prestes, 580 São Paulo, Brazil
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitovert 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Peng C, Viana T, Petersen MA, Larsen FH, Arneborg N. Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. Metabolomics 2018; 14:93. [PMID: 30830430 DOI: 10.1007/s11306-018-1391-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There has been a growing interest towards creating defined mixed starter cultures for alcoholic fermentations. Previously, metabolite differences between single and mixed cultures have been explored at the endpoint of fermentations rather than during fermentations. OBJECTIVES To create metabolic footprints of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. METHODS 1H NMR- and GC-MS-based metabolomics was used to identify metabolites that discriminate single and mixed cultures of Lachancea thermotolerans (LT) and Saccharomyces cerevisiae (SC) during alcoholic fermentations. RESULTS Twenty-two metabolites were found when comparing single LT and mixed cultures, including both non-volatiles (carbohydrate, amino acid and acids) and volatiles (higher alcohols, esters, ketones and aldehydes). Fifteen of these compounds were discriminatory only at the death phase initiation (T1) and fifteen were discriminatory only at the death phase termination (T2) of LT in mixed cultures. Eight metabolites were discriminatory at both T1 and T2. These results indicate that specific metabolic changes may be descriptive of different LT growth behaviors. Fifteen discriminatory metabolites were found when comparing single SC and mixed cultures. These metabolites were all volatiles, and twelve metabolites were discriminatory only at T2, indicating that LT-induced changes in volatiles occur during the death phase of LT in mixed cultures and not during their initial growth stage. CONCLUSIONS This work provides a detailed insight into yeast metabolites that differ between single and mixed cultures, and these data may be used for understanding and eventually predicting yeast metabolic changes in wine fermentations.
Collapse
Affiliation(s)
- Chuantao Peng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Tiago Viana
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
- Chr.Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Flemming Hofmann Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
21
|
A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil. Antonie van Leeuwenhoek 2017; 110:971-983. [DOI: 10.1007/s10482-017-0868-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/30/2017] [Indexed: 01/21/2023]
|
22
|
Petruzzi L, Bevilacqua A, Corbo MR, Speranza B, Capozzi V, Sinigaglia M. A Focus on Quality and Safety Traits of Saccharomyces cerevisiae Isolated from Uva di Troia Grape Variety. J Food Sci 2016; 82:124-133. [PMID: 27871123 DOI: 10.1111/1750-3841.13549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/11/2016] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to study Saccharomyces cerevisiae strains isolated from vineyards of the autochthonous grape variety "Uva di Troia" located in different geographical areas of Apulian region (Southern Italy). Four hundred isolates were studied in relation to H2 S production, β-glucosidase activity, and pigments adsorption from grape skin. Thus, 81 isolates were selected, identified through the amplification of the interdelta region, and grouped in 19 biotypes (from I to XIX). The enological performances were assessed to determine the content of residual sugars, ethanol, glycerol, and volatile acidity, after a microfermentation in Uva di Troia must for each isolate. The ability to remove ochratoxin A (OTA) was studied as an additional tool to select promising strains. A geographical-dependent technological variability was found for glycerol and volatile acidity, suggesting that the different indigenous yeasts can have a peculiar impact on the final characteristics of the corresponding wine ("Nero di Troia"). Only 2 biotypes (VI and XVII) were able to remove OTA throughout fermentation, with the highest reduction achieved by the biotype XVII (ca. 30%).
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment, Univ. of Foggia, Via Napoli 25, 71122, Foggia, Italy
| |
Collapse
|
23
|
Noti O, Vaudano E, Pessione E, Garcia-Moruno E. Short-term response of different Saccharomyces cerevisiae strains to hyperosmotic stress caused by inoculation in grape must: RT-qPCR study and metabolite analysis. Food Microbiol 2015; 52:49-58. [DOI: 10.1016/j.fm.2015.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
24
|
Kemsawasd V, Viana T, Ardö Y, Arneborg N. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation. Appl Microbiol Biotechnol 2015; 99:10191-207. [PMID: 26257263 DOI: 10.1007/s00253-015-6835-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 11/25/2022]
Abstract
In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were alanine, arginine, asparagine, aspartic acid, glutamine, isoleucine, ammonium sulphate, serine, valine and mixtures of 19 amino acids and of 19 amino acids plus ammonium sulphate (for S. cerevisiae), serine (for L. thermotolerans), alanine (for H. uvarum), alanine and asparagine (for M. pulcherrima), arginine, asparagine, glutamine, isoleucine and mixture of 19 amino acids (for T. delbrueckii). Furthermore, our results showed a clear positive effect of complex mixtures of N-sources on S. cerevisiae and on T. delbrueckii (although to a lesser extent) as to all performance parameters studied, whereas for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally, the influences of N-sources observed for T. delbrueckii and H. uvarum resembled those of S. cerevisiae the most and the least, respectively. Overall, this work contributes to an improved understanding of how different N-sources affect growth, glucose consumption and ethanol production of wine-related yeast species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during wine fermentations.
Collapse
Affiliation(s)
- Varongsiri Kemsawasd
- Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| | - Tiago Viana
- Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| | - Ylva Ardö
- Dairy, Meat and Plant Product Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, 1958, Denmark.
| | - Nils Arneborg
- Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| |
Collapse
|
25
|
Modulating the frequency and bias of stochastic switching to control phenotypic variation. Nat Commun 2014; 5:4574. [PMID: 25087841 DOI: 10.1038/ncomms5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/02/2014] [Indexed: 12/29/2022] Open
Abstract
Mechanisms that control cell-to-cell variation in gene expression ('phenotypic variation') can determine a population's growth rate, robustness, adaptability and capacity for complex behaviours. Here we describe a general strategy (termed FABMOS) for tuning the phenotypic variation and mean expression of cell populations by modulating the frequency and bias of stochastic transitions between 'OFF' and 'ON' expression states of a genetic switch. We validated the strategy experimentally using a synthetic fim switch in Escherichia coli. Modulating the frequency of switching can generate a bimodal (low frequency) or a unimodal (high frequency) population distribution with the same mean expression. Modulating the bias as well as the frequency of switching can generate a spectrum of bimodal and unimodal distributions with the same mean expression. This remarkable control over phenotypic variation, which cannot be easily achieved with standard gene regulatory mechanisms, has many potential applications for synthetic biology, engineered microbial ecosystems and experimental evolution.
Collapse
|