1
|
Ye C, Xu N, Gao C, Liu G, Xu J, Zhang W, Chen X, Nielsen J, Liu L. Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C. Biotechnol Bioeng 2020; 117:1562-1574. [PMID: 32022245 DOI: 10.1002/bit.27298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/01/2023]
Abstract
Biological network construction for Saccharomyces cerevisiae is a widely used approach for simulating phenotypes and designing cell factories. However, due to a complicated regulatory mechanism governing the translation of genotype to phenotype, precise prediction of phenotypes remains challenging. Here, we present WM_S288C, a computational whole-cell model that includes 15 cellular states and 26 cellular processes and which enables integrated analyses of physiological functions of Saccharomyces cerevisiae. Using WM_S288C to predict phenotypes of S. cerevisiae, the functions of 1140 essential genes were characterized and linked to phenotypes at five levels. During the cell cycle, the dynamic allocation of intracellular molecules could be tracked in real-time to simulate cell activities. Additionally, one-third of non-essential genes were identified to affect cell growth via regulating nucleotide concentrations. These results demonstrated the value of WM_S288C as a tool for understanding and investigating the phenotypes of S. cerevisiae.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jianzhong Xu
- Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China
| | - Weiguo Zhang
- Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Genetic Basis of Variation in Heat and Ethanol Tolerance in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:179-188. [PMID: 30459179 PMCID: PMC6325899 DOI: 10.1534/g3.118.200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae has the capability of fermenting sugar to produce concentrations of ethanol that are toxic to most organisms. Other Saccharomyces species also have a strong fermentative capacity, but some are specialized to low temperatures, whereas S. cerevisiae is the most thermotolerant. Although S. cerevisiae has been extensively used to study the genetic basis of ethanol tolerance, much less is known about temperature dependent ethanol tolerance. In this study, we examined the genetic basis of ethanol tolerance at high temperature among strains of S. cerevisiae. We identified two amino acid polymorphisms in SEC24 that cause strong sensitivity to ethanol at high temperature and more limited sensitivity to temperature in the absence of ethanol. We also identified a single amino acid polymorphism in PSD1 that causes sensitivity to high temperature in a strain dependent fashion. The genes we identified provide further insight into genetic variation in ethanol and temperature tolerance and the interdependent nature of these two traits in S. cerevisiae.
Collapse
|
3
|
Tosato V, Sims J, West N, Colombin M, Bruschi CV. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 2016; 63:281-292. [PMID: 27491680 DOI: 10.1007/s00294-016-0635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Collapse
Affiliation(s)
- Valentina Tosato
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia. .,Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Nicole West
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Clinical Pathology, Maggiore Hospital, Piazza dell' Ospitale 2, 34125, Trieste, Italy
| | - Martina Colombin
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|