1
|
Oraby أميرة عرابي A, Weickardt I, Zibek S. Foam Fractionation Methods in Aerobic Fermentation Processes. Biotechnol Bioeng 2022; 119:1697-1711. [PMID: 35394649 DOI: 10.1002/bit.28102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022]
Abstract
Inherently occurring foam formation during aerobic fermentations of surface-active compounds can be exploited by fractionating the foam. This also serves as the first downstream processing step for product concentration and is used for in situ product recovery. Compared to other foam prevention methods, it does not interfere with fermentation parameters or alter broth composition. Nevertheless, parameters affecting the foaming behaviour are complex. Therefore, the specific foam fractionation designs need to be engineered for each fermentation individually. This still hinders a widespread industrial application. However, few available commercial approaches demonstrate the applicability of foam columns on an industrial scale. This systematic literature review highlights relevant design aspects and process demands that need to be considered for an application to fermentations and proposes a classification of foam fractionation designs and methods. It further analyses substance-specific characteristics associated with foam fractionation. Finally, solutions for current challenges are presented, and future perspectives are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amira Oraby أميرة عرابي
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Isabell Weickardt
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Identification of a Novel Biosurfactant with Antimicrobial Activity Produced by Rhodococcus opacus R7. Microorganisms 2022; 10:microorganisms10020475. [PMID: 35208929 PMCID: PMC8877126 DOI: 10.3390/microorganisms10020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus members excrete secondary metabolites, especially compounds which act as biosurfactants. In this work, we demonstrated the ability of Rhodococcus opacus R7 to produce a novel bioactive compound belonging to the class of biosurfactants with antimicrobial properties during the growth on naphthalene. Chemical and biochemical analyses of the isolated compound demonstrated that the biosurfactant could be classified as a hydrophobic peptide. The ESI-full mass spectrometry revealed that the isolated biosurfactant showed a molecular weight of 1292 Da and NMR spectra evidenced the composition of the following amino acid residues: Ala, Thr, Asp, Gly, Ser. Surfactant activity of the R. opacus R7 compound was quantified by the critical micelle dilution (CMD) method and the critical micelle concentration (CMC) was estimated around 20 mg L−1 with a corresponding surface tension of 48 mN m−1. Moreover, biological assays demonstrated that R. opacus R7 biosurfactant peptide exhibited antimicrobial activity against Escherichia coli ATCC 29522 and Staphylococcus aureus ATCC 6538 with the minimum inhibition growth concentration (MIC) values of 2.6 mg mL−1 and 1.7 mg mL−1, respectively. In this study for the first time, a hydrophobic peptide with both biosurfactant and antimicrobial activity was isolated from a bacterium belonging to Rhodococcus genus.
Collapse
|
3
|
The Role of Serratomolide-like Amino Lipids Produced by Bacteria of Genus Serratia in Nematicidal Activity. Pathogens 2022; 11:pathogens11020198. [PMID: 35215141 PMCID: PMC8880026 DOI: 10.3390/pathogens11020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.
Collapse
|
4
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Le Flèche-Matéos A, Kügler JH, Hansen SH, Syldatk C, Hausmann R, Lomprez F, Vandenbogaert M, Manuguerra JC, Grimont PA. Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil and emendation description of the genus Rouxiella. Int J Syst Evol Microbiol 2017; 67:1255-1259. [DOI: 10.1099/ijsem.0.001794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anne Le Flèche-Matéos
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Institut Pasteur, F-75724 Paris Cedex 15, France
| | - Johannes H Kügler
- Technical Biology, Institute of Process Engineering in Life Sciences Section II, Karlsruhe Institute of Technology, Engler-Bunte Ring 1, 76131-Karlsruhe, Germany
| | - Silla H Hansen
- Technical Biology, Institute of Process Engineering in Life Sciences Section II, Karlsruhe Institute of Technology, Engler-Bunte Ring 1, 76131-Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences Section II, Karlsruhe Institute of Technology, Engler-Bunte Ring 1, 76131-Karlsruhe, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599-Stuttgart, Germany
| | - Fabienne Lomprez
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Institut Pasteur, F-75724 Paris Cedex 15, France
| | - Mathias Vandenbogaert
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Institut Pasteur, F-75724 Paris Cedex 15, France
| | - Jean-Claude Manuguerra
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Institut Pasteur, F-75724 Paris Cedex 15, France
| | | |
Collapse
|
6
|
Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 2016; 6:27035. [PMID: 27271534 PMCID: PMC4897644 DOI: 10.1038/srep27035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/02/2022] Open
Abstract
DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.
Collapse
|