1
|
Ciuchcinski K, Kaczorowska AK, Biernacka D, Dorawa S, Kaczorowski T, Park Y, Piekarski K, Stanowski M, Ishikawa T, Stokke R, Steen IH, Dziewit L. Computational pipeline for sustainable enzyme discovery through (re)use of metagenomic data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125381. [PMID: 40252419 DOI: 10.1016/j.jenvman.2025.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Enzymes derived from extremophilic organisms, also known as extremozymes, offer sustainable and efficient solutions for industrial applications. Valued for their resilience and low environmental impact, extremozymes have found use as catalysts in various processes, ranging from dairy production to pharmaceutical manufacturing. However, discovery of novel extremozymes is often hindered by challenges such as culturing difficulties, underrepresentation of extreme environments in reference databases, and limitations of traditional sequence-based screening methods. In this work, we present a computational pipeline designed to discover novel enzymes from metagenomic data derived from extreme environments. This pipeline represents a versatile and sustainable approach that promotes reuse and recycling of existing datasets and minimises the need for additional environmental sampling. In its core, the algorithm integrates both traditional bioinformatic techniques and recent advances in structural prediction, enabling rapid and accurate identification of enzymes. However, due to its design, the algorithm relies heavily on existing databases, which can limit its effectiveness in situations where reference data is scarce or when encountering novel protein families. As a proof-of-concept, we applied the pipeline to metagenomic data from deep-sea hydrothermal vents, with a focus on β-galactosidases. The pipeline identified 11 potential candidate proteins, out of which 10 showed in vitro activity. One of the selected enzymes, βGal_UW07, showed strong potential for industrial applications. The enzyme exhibited optimal activity at 70 °C and was exceptionally resistant to high pH and the presence of metal ions and reducing agents. Overall, our results indicate that the pipeline is highly accurate and can play a key role in sustainable bioprospecting, leveraging existing metagenomic datasets and minimising in situ interventions in pristine regions.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Daria Biernacka
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland; Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Younginn Park
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Karol Piekarski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Michal Stanowski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Takao Ishikawa
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
4
|
Gudeta DD, Foley SL. Versatile allelic replacement and self-excising integrative vectors for plasmid genome mutation and complementation. Microbiol Spectr 2024; 12:e0338723. [PMID: 37991378 PMCID: PMC10782977 DOI: 10.1128/spectrum.03387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE In spite of the dissemination of multidrug-resistant plasmids among Gram-negative pathogens, including those carrying virulence genes, vector tools for studying plasmid-born genes are lacking. The allelic replacement vectors can be used to generate plasmid or chromosomal mutations including markless point mutations. This is the first report describing a self-excising integrative vector that can be used as a stable single-copy complementing tool to study medically important pathogens including in vivo studies without the need for antibiotic selection. Overall, our newly developed vectors can be applied for the assessment of the function of plasmid-encoded genes by specifically creating mutations, moving large operons between plasmids and to/from the chromosome, and complementing phenotypes associated with gene mutation. Furthermore, the vectors express chromophores for the detection of target gene modification or colony isolation, avoiding time-consuming screening procedures.
Collapse
Affiliation(s)
- Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Jolley EA, Yakhnin H, Tack DC, Babitzke P, Bevilacqua PC. Transcriptome-wide probing reveals RNA thermometers that regulate translation of glycerol permease genes in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1365-1378. [PMID: 37217261 PMCID: PMC10573289 DOI: 10.1261/rna.079652.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Sanford PA, Woolston BM. Expanding the genetic engineering toolbox for the metabolically flexible acetogen Eubacterium limosum. J Ind Microbiol Biotechnol 2022; 49:6650221. [PMID: 35881468 PMCID: PMC9559302 DOI: 10.1093/jimb/kuac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
Acetogenic bacteria are an increasingly popular choice for producing fuels and chemicals from single carbon (C1) substrates. Eubacterium limosum is a promising acetogen with several native advantages, including the ability to catabolize a wide repertoire of C1 feedstocks and the ability to grow well on agar plates. However, despite its promise as a strain for synthetic biology and metabolic engineering, there are insufficient engineering tools and molecular biology knowledge to leverage its native strengths for these applications. To capitalize on the natural advantages of this organism, here we extended its limited engineering toolbox. We evaluated the copy number of three common plasmid origins of replication and devised a method of controlling copy number and heterologous gene expression level by modulating antibiotic concentration. We further quantitatively assessed the strength and regulatory tightness of a panel of promoters, developing a series of well-characterized vectors for gene expression at varying levels. In addition, we developed a black/white colorimetric genetic reporter assay and leveraged the high oxygen tolerance of E. limosum to develop a simple and rapid transformation protocol that enables benchtop transformation. Finally, we developed two new antibiotic selection markers—doubling the number available for this organism. These developments will enable enhanced metabolic engineering and synthetic biology work with E. limosum.
Collapse
Affiliation(s)
- Patrick A Sanford
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH. mBio 2021; 12:e0276621. [PMID: 34809461 PMCID: PMC8609365 DOI: 10.1128/mbio.02766-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable β-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different β-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control.
Collapse
|
8
|
Li N, Liu Y, Wang C, Weng P, Wu Z, Zhu Y. Overexpression and characterization of a novel GH4 galactosidase with β-galactosidase activity from Bacillus velezensis SW5. J Dairy Sci 2021; 104:9465-9477. [PMID: 34127264 DOI: 10.3168/jds.2021-20258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
A novel galactosidase gene (gal3149) was identified from Bacillus velezensis SW5 and heterologously expressed in Escherichia coli BL21 (DE3). The novel galactosidase, Gal3149, encoded by gal3149 in an open reading frame of 1,299 bp, was 433 amino acids in length. Protein sequence analysis showed that Gal3149 belonged to family 4 of glycoside hydrolases (GH4). Gal3149 displayed higher enzyme activity for the substrate 2-nitrophenyl-β-d-galactopyranoside (oNPG) than for 4-nitrophenyl-α-d-galactopyranoside (pNPαG). This is the first time that an enzyme belonging to GH4 has been shown to exhibit β-galactosidase activity. Gal3149 showed optimal activity at pH 8.0 and 50°C, and exhibited excellent thermal stability, with retention of 50% relative activity after incubation at a temperature range of 0 to 50°C for 48 h. Gal3149 activity was significantly improved by K+ and Na+, and was strongly or completely inhibited by Ag+, Zn2+, Tween-80, Cu2+, carboxymethyl cellulose, and oleic acid. The rate of hydrolyzed lactose in 1 mL of milk by 1 U of Gal3149 reached about 50% after incubation for 4 h. These properties lay a solid foundation for Gal3149 in application of the lactose-reduced dairy industry.
Collapse
Affiliation(s)
- Na Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yang Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China; Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, People's Republic of China
| | - Changyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| | - Yazhu Zhu
- Zhejiang International Maritime College, Zhoushan 316021, People's Republic of China
| |
Collapse
|
9
|
Freeze-thaw system for thermostable β-Galactosidase isolation from Gedong Songo Geobacillus sp. isolate. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.11.383-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effective isolation of intracellular enzymes from thermophilic bacteria is challenging because of their sturdy membrane. On the other hand, the low-cost and nontoxic method is essential for industrial food enzymes. The freeze-thaw cycles using acetone-dry ice as a frozen system was studied for efficient isolation of thermostable b-galactosidase from Geobacillus sp. dYTae-14. This enzyme has been known for application in the dairy industry to reduce the lactose content. In this study, the freeze-thaw method was performed with cycle variations 3, 5, and 7 cycles. Acetone-dry ice (-78°C) is used as a frozen system and boiling water for thawing. The b-galactosidase activity was assayed using ortho-Nitrophenyl-β-galactoside (ONPG) as substrate and protein content determined with the Lowry method. The results show that the most effective freeze-thaw is five cycles. The enzyme’s highest specific activity is 3610.13 units/mg proteins at 40-60 % ammonium sulfate saturation, with a purity value of 2.52.
Collapse
|
10
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Kim NM, Sinnott RW, Sandoval NR. Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr Opin Biotechnol 2020; 64:39-46. [DOI: 10.1016/j.copbio.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
|
12
|
Jensen TØ, Tellgren-Roth C, Redl S, Maury J, Jacobsen SAB, Pedersen LE, Nielsen AT. Genome-wide systematic identification of methyltransferase recognition and modification patterns. Nat Commun 2019; 10:3311. [PMID: 31427571 PMCID: PMC6700114 DOI: 10.1038/s41467-019-11179-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23 methyltransferase genes. Using our method, we characterize the 23 methyltransferases, assign motifs to the respective enzymes and verify activity for 11 of the 12 motifs. Single molecule real-time DNA sequencing allows genome-wide identification of DNA methylation patterns. Here, Jensen et al. present a high-throughput method that allows rapid coupling of DNA methylation patterns with their corresponding methyltransferase genes in bacteria.
Collapse
Affiliation(s)
- Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, SciLifeLab, SE-751 08, Uppsala, Sweden
| | - Stephanie Redl
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.,Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | | | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability (CfB), Technical University of Denmark (DTU), DK-2800, Lyngby, Denmark.
| |
Collapse
|
13
|
Gilman J, Singleton C, Tennant RK, James P, Howard TP, Lux T, Parker DA, Love J. Rapid, Heuristic Discovery and Design of Promoter Collections in Non-Model Microbes for Industrial Applications. ACS Synth Biol 2019; 8:1175-1186. [PMID: 30995831 DOI: 10.1021/acssynbio.9b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Well-characterized promoter collections for synthetic biology applications are not always available in industrially relevant hosts. We developed a broadly applicable method for promoter identification in atypical microbial hosts that requires no a priori understanding of cis-regulatory element structure. This novel approach combines bioinformatic filtering with rapid empirical characterization to expand the promoter toolkit and uses machine learning to improve the understanding of the relationship between DNA sequence and function. Here, we apply the method in Geobacillus thermoglucosidasius, a thermophilic organism with high potential as a synthetic biology chassis for industrial applications. Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrificans, and G. thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding sequence. Partition modeling identified sequence positions upstream of the canonical -35 and -10 consensus motifs that were predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function. However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the relatively small size of the training data set compared to the size of the modeled design space.
Collapse
Affiliation(s)
- James Gilman
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Chloe Singleton
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Richard K. Tennant
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Paul James
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle-upon-Tyne NE1 7RU, U.K
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich 85764, Germany
| | - David A. Parker
- Biodomain, Shell Technology Center Houston, 3333 Highway 6 South, Houston, Texas 77082-3101, United States
| | - John Love
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
14
|
Evolving methods for rational de novo design of functional RNA molecules. Methods 2019; 161:54-63. [PMID: 31059832 DOI: 10.1016/j.ymeth.2019.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Artificial RNA molecules with novel functionality have many applications in synthetic biology, pharmacy and white biotechnology. The de novo design of such devices using computational methods and prediction tools is a resource-efficient alternative to experimental screening and selection pipelines. In this review, we describe methods common to many such computational approaches, thoroughly dissect these methods and highlight open questions for the individual steps. Initially, it is essential to investigate the biological target system, the regulatory mechanism that will be exploited, as well as the desired components in order to define design objectives. Subsequent computational design is needed to combine the selected components and to obtain novel functionality. This process can usually be split into constrained sequence sampling, the formulation of an optimization problem and an in silico analysis to narrow down the number of candidates with respect to secondary goals. Finally, experimental analysis is important to check whether the defined design objectives are indeed met in the target environment and detailed characterization experiments should be performed to improve the mechanistic models and detect missing design requirements.
Collapse
|
15
|
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018; 7:foods7060092. [PMID: 29899254 PMCID: PMC6025323 DOI: 10.3390/foods7060092] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized.
Collapse
Affiliation(s)
- Gözde Konuray
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| | - Zerrin Erginkaya
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| |
Collapse
|
16
|
Drejer EB, Hakvåg S, Irla M, Brautaset T. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae. Microorganisms 2018; 6:microorganisms6020042. [PMID: 29748477 PMCID: PMC6027425 DOI: 10.3390/microorganisms6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/17/2023] Open
Abstract
Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B.methanolicus, B.coagulans, B.smithii, B.licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.
Collapse
Affiliation(s)
- Eivind B Drejer
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|