1
|
Yao XY, Zhang YH, Weng YW, Xie JF, Zheng K. Analyzing the causal relationship between gut microbiotas, blood metabolites, and COVID-19 susceptibility: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41445. [PMID: 40193653 PMCID: PMC11977742 DOI: 10.1097/md.0000000000041445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 04/09/2025] Open
Abstract
Gut microbiota and blood metabolites play crucial roles in the progression and outcomes of COVID-19, but the causal relationships and mechanisms remain unclear. Our aim is to use two-sample Mendelian randomization (MR) to explore the causal relationships between gut microbiota, COVID-19 susceptibility, and potential mediating blood metabolites. We utilized summary statistics from the largest genome-wide association studies (GWAS) to date on gut microbiota (n = 18,340), blood metabolites (n = 115,078), and COVID-19 susceptibility (cases n = 60,176 and controls n = 1310,725 from the COVID-19 Host Genetics Initiative meta-analysis). We conducted bidirectional MR analyses to explore the causal relationships between gut microbiota and COVID-19 susceptibility and performed two-step MR to identify potential mediating blood metabolites. Five analytical methods were used to assess two-sample causal relationships, with inverse variance weighted (IVW) being the primary method. Sensitivity analyses were also conducted to ensure the robustness of the main MR results. Using the IVW method, we found causal relationships between 3 types of gut microbiota and 34 blood metabolites with COVID-19 susceptibility. In the two-step MR, the non-oxidative branch of the Pentose phosphate pathway was shown to reduce Sebacate (C10-DC) levels, and the species Parabacteroides goldsteinii was negatively correlated with Acetoacetate levels. Sebacate (C10-DC) levels were negatively associated with COVID-19 susceptibility, while Acetoacetate levels were positively associated with COVID-19 susceptibility. Furthermore, these causal relationships remained significant after correcting for false discovery rates (all q-values < 0.05). Heterogeneity and pleiotropy tests showed no statistical significance (P > .05). Mediation analysis indicated that the abundance of the non-oxidative branch of the Pentose phosphate pathway and COVID-19 susceptibility was mediated by Sebacate (C10-DC) levels (mediation proportion of 15.8%), and the abundance of P goldsteinii and COVID-19 susceptibility was mediated by Acetoacetate levels (mediation proportion of 31.7%). The current MR study provides evidence supporting the causal relationships between several specific gut microbiotas and COVID-19 susceptibility, as well as potential mediating blood metabolites. Our findings warrant further validation through larger epidemiological studies.
Collapse
Affiliation(s)
- Xiao-Yan Yao
- The School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yan-Hua Zhang
- The School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Yu-Wei Weng
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Jian-Feng Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Kui‐Cheng Zheng
- The School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| |
Collapse
|
2
|
Essghaier B, Naccache C, Ben-Miled H, Mottola F, Ben-Mahrez K, Mezghani Khemakhem M, Rocco L. Discovery and characterization of novel lipopeptides produced by Virgibacillus massiliensis with biosurfactant and antimicrobial activities. 3 Biotech 2024; 14:258. [PMID: 39372494 PMCID: PMC11452367 DOI: 10.1007/s13205-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The study aimed to evaluate the biosurfactants (BSs) production by SM-23 strain of Virgibacillus identified by phenotypical and WGS analysis as Virgibacillus massiliensis. We first demonstrated the lipopeptides production by Virgibacillus massiliensis specie and studied their biochemical and molecular analysis as well as their biological potential. The GC-MS analysis indicated that methyl.2-hyroxydodecanoate was the major fatty acid compound with 33.22%. The maximum BSs production was obtained in LB medium supplemented by 1% olive oil (v/v) at 30 °C and 5% NaCl with 1.92 g/l. The obtained results revealed the significant biosurfactants/bioemulsifier potential compared to triton X100 with E24 of 100%, and an emulsification stability SE of 83%. The lipopeptides types were identified by FTIR analysis. A strong antimicrobial action was observed by the produced lipopeptides by the agar diffusion method against E.coli, K. pneumoniae, S. aureus, Fusarium sp, Alternaria sp, and Phytophtora sp. The complete genome sequencing showed genes involved in the synthesis of multiple compounds identified as amphipathic cyclic lipopeptides such as locillomycin/locillomycin B/locillomycin C and bacillibactin. Our results highlighted significant lipopeptides properties displayed by V. massiliensis that can be exploited to develop a novel strategy in the formulation of natural biocidal and fungicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04100-9.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Chahnez Naccache
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Maha Mezghani Khemakhem
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
3
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
4
|
Kayalvizhi R, Sanjana J, Jacob S, Kumar V. An Eclectic Review on Dicarboxylic Acid Production Through Yeast Cell Factories and Its Industrial Prominence. Curr Microbiol 2024; 81:147. [PMID: 38642080 DOI: 10.1007/s00284-024-03654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024]
Abstract
Dicarboxylic acid (DCA) is a multifaceted chemical intermediate, recoursed to produce many industrially important products such as adhesives, plasticizers, lubricants, polymers, etc. To bypass the shortcomings of the chemical methods of synthesis of DCA and to reduce fossil fuel footprints, bio-based synthesis is gaining attention. In pursuit of an eco-friendly sustainable alternative method of DCA production, microbial cell factories, and renewable organic resources are gaining popularity. Among the plethora of microbial communities, yeast is being favored industrially compared to bacterial fermentation due to its hyperosmotic and low pH tolerance and flexibility for gene manipulations. By application of rapidly evolving genetic manipulation techniques, the bio-based DCA production could be made more precise and economical. To bridge the gap between supply and demand of DCA, many strategies are employed to improve the fermentation. This review briefly outlines the advancements in DCA production using yeast cell factories with the exemplification of strain improvement strategies.
Collapse
Affiliation(s)
- Ramalingam Kayalvizhi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, Tamil Nadu, 603203, India
| | - Jayacumar Sanjana
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, Tamil Nadu, 603203, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, Tamil Nadu, 603203, India.
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
5
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
6
|
Shin K, Kang S, Lee T, Kim T, Oh D. Pentadecanedioic acid production from 15‐hydroxypentadecanoic acid using an engineered biocatalyst with a co‐factor regeneration system. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyung‐Chul Shin
- Department of Integrative Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Tae‐Eui Lee
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Tae‐Hun Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Integrative Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| |
Collapse
|
7
|
A multi-enzyme cascade reaction for the production of α,ω-dicarboxylic acids from free fatty acids. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
The evaluation of oleic acid alternatives for the biochemical production of 9-octadecenedioic acid. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kim T, Kang S, Park J, Oh D. Construction of an engineered biocatalyst system for the production of medium‐chain α,ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids. Biotechnol Bioeng 2020; 117:2648-2657. [DOI: 10.1002/bit.27433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tae‐Hun Kim
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul Republic of Korea
| |
Collapse
|
10
|
Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol Adv 2020; 40:107504. [PMID: 31926255 DOI: 10.1016/j.biotechadv.2020.107504] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of CH bonds in a regio and stereoselective manner. Activation of the non-activated carbon atom can be further enhanced by multistep chemo-enzymatic reactions; moreover, several useful chemicals can be synthesized to provide alternative organic synthesis routes. Given their versatile functionality, CYPs show promise in a number of biotechnological fields. Recently, various CYPs, along with their sequences and functionalities, have been identified owing to rapid developments in sequencing technology and molecular biotechnology. In addition to these discoveries, attempts have been made to utilize CYPs to industrially produce biochemicals from available and sustainable bioresources such as oil, amino acids, carbohydrates, and lignin. Here, these accomplishments, particularly those involving the use of CYP enzymes as whole-cell biocatalysts for bioresource biotransformation, will be reviewed. Further, recently developed biotransformation pathways that result in gram-scale yields of fatty acids and fatty alkanes as well as aromatic amino acids, which depend on the hosts used for CYP expression, and the nature of the multistep reactions will be discussed. These pathways are similar regardless of whether the hosts are CYP-producing or non-CYP-producing; the limitations of these methods and the ways to overcome them are reviewed here.
Collapse
|
11
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
12
|
He Q, Bennett GN, San KY, Wu H. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of Pseudomonas putida GPo1 With Native FadL in Engineered Escherichia coli. Front Bioeng Biotechnol 2019; 7:273. [PMID: 31681749 PMCID: PMC6812396 DOI: 10.3389/fbioe.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hydroxy fatty acids (HFAs) are valuable compounds that are widely used in medical, cosmetic and food fields. Production of ω-HFAs via bioconversion by engineered Escherichia coli has received a lot of attention because this process is environmentally friendly. In this study, a whole-cell bio-catalysis strategy was established to synthesize medium-chain ω-HFAs based on the AlkBGT hydroxylation system from Pseudomonas putida GPo1. The effects of blocking the β-oxidation of fatty acids (FAs) and enhancing the transportation of FAs on ω-HFAs bio-production were also investigated. When fadE and fadD were deleted, the consumption of decanoic acid decreased, and the yield of ω-hydroxydecanoic acid was enhanced remarkably. Additionally, the co-expression of the FA transporter protein, FadL, played an important role in increasing the conversion rate of ω-hydroxydecanoic acid. As a result, the concentration and yield of ω-hydroxydecanoic acid in NH03(pBGT-fadL) increased to 309 mg/L and 0.86 mol/mol, respectively. This whole-cell bio-catalysis system was further applied to the biosynthesis of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid using octanoic acid and dodecanoic acid as substrates, respectively. The concentrations of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid reached 275.48 and 249.03 mg/L, with yields of 0.63 and 0.56 mol/mol, respectively. This study demonstrated that the overexpression of AlkBGT coupled with native FadL is an efficient strategy to synthesize medium-chain ω-HFAs from medium-chain FAs in fadE and fadD mutant E. coli strains.
Collapse
Affiliation(s)
- Qiaofei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Ka-Yiu San
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, Shanghai, China
| |
Collapse
|
13
|
Lee H, Sugiharto YEC, Lee H, Jeon W, Ahn J, Lee H. Biotransformation of dicarboxylic acids from vegetable oil–derived sources: current methods and suggestions for improvement. Appl Microbiol Biotechnol 2019; 103:1545-1555. [DOI: 10.1007/s00253-018-9571-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
|
14
|
Lee H, Han C, Lee HW, Park G, Jeon W, Ahn J, Lee H. Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:310. [PMID: 30455739 PMCID: PMC6225622 DOI: 10.1186/s13068-018-1310-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND As a sustainable industrial process, the production of dicarboxylic acids (DCAs), used as precursors of polyamides, polyesters, perfumes, plasticizers, lubricants, and adhesives, from vegetable oil has continuously garnered interest. Although the yeast Candida tropicalis has been used as a host for DCA production, additional strains are continually investigated to meet productivity thresholds and industrial needs. In this regard, the yeast Wickerhamiella sorbophila, a potential candidate strain, has been screened. However, the lack of genetic and physiological information for this uncommon strain is an obstacle that merits further research. To overcome this limitation, we attempted to develop a method to facilitate genetic recombination in this strain and produce high amounts of DCAs from methyl laurate using engineered W. sorbophila. RESULTS In the current study, we first developed efficient genetic engineering tools for the industrial application of W. sorbophila. To increase homologous recombination (HR) efficiency during transformation, the cell cycle of the yeast was synchronized to the S/G2 phase using hydroxyurea. The HR efficiency at POX1 and POX2 loci increased from 56.3% and 41.7%, respectively, to 97.9% in both cases. The original HR efficiency at URA3 and ADE2 loci was nearly 0% during the early stationary and logarithmic phases of growth, and increased to 4.8% and 25.6%, respectively. We used the developed tools to construct W. sorbophila UHP4, in which β-oxidation was completely blocked. The strain produced 92.5 g/l of dodecanedioic acid (DDDA) from methyl laurate over 126 h in 5-l fed-batch fermentation, with a productivity of 0.83 g/l/h. CONCLUSIONS Wickerhamiella sorbophila UHP4 produced more DDDA methyl laurate than C. tropicalis. Hence, we demonstrated that W. sorbophila is a powerful microbial platform for vegetable oil-based DCA production. In addition, by using the developed genetic engineering tools, this emerging yeast could be used for the production of a variety of fatty acid derivatives, such as fatty alcohols, fatty aldehydes, and ω-hydroxy fatty acids.
Collapse
Affiliation(s)
- Heeseok Lee
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Changpyo Han
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Hyeok-Won Lee
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Gyuyeon Park
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Wooyoung Jeon
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Hongweon Lee
- Biotechnology Process Engineering Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| |
Collapse
|