1
|
Chen H, Tian B, Wang R, Pan Z, Gao D, Li H. Uracil walking primer PCR: An accurate and efficient genome-walking tool. J Genet Eng Biotechnol 2025; 23:100478. [PMID: 40390480 PMCID: PMC11957515 DOI: 10.1016/j.jgeb.2025.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 05/21/2025]
Abstract
Genome walking PCR has been extensively used to acquire unknown genomic regions bordering known DNAs. However, non-target amplification challenges the efficacy of existing genome-walking PCRs. Herein, we conceived a new genome-walking method termed Uracil walking Primer PCR (UP-PCR). The UP-PCR features introducing an uracil base at the penultimate position of arbitrary walking primer (AWP) 3' end. A UP-PCR set comprises three nested amplification steps, which are performed by an AWP sequentially coupling a set of three nested site-specific primers, respectively. Prior to secondary UP-PCR, primary UP-PCR product is processed with uracil DNA glycosylase to destroy the carried AWP. As a result, only target primary product is exponentially amplified in the next UP-PCR(s), as it is the only product with binding sites for the both primers. The performance of UP-PCR has been validated by walking three selected genes. The walking experiments showed that each secondary or tertiary UP-PCR generated one to two amplicon ranging in size from 0.2 to 5.0 kb, while with a negligible non-target background; and the amplicons of the secondary UP-PCRs were all correct, indicating that tertiary UP-PCR is generally unnecessary. These findings suggested that UP-PCR has a satisfactory walking ability, specificity, and speed. Collectively, the proposed UP-PCR is a potential candidate method for genome walking.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Rongrong Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Dandan Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China.
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchnag, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchnag, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Yu Z, Wang D, Lin Z, Li H. Protocol to Mine Unknown Flanking DNA Using PER-PCR for Genome Walking. Bio Protoc 2025; 15:e5188. [PMID: 40028008 PMCID: PMC11865826 DOI: 10.21769/bioprotoc.5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 03/05/2025] Open
Abstract
Genome walking, a molecular technique for mining unknown flanking DNAs, has a wide range of uses in life sciences and related areas. Herein, a simple but reliable genome walking protocol named primer extension refractory PCR (PER-PCR) is detailed. This PER-PCR-based protocol uses a set of three walking primers (WPs): primary WP (PWP), secondary WP (SWP), and tertiary WP (TWP). The 15 nt middle region of PWP overlaps the 3' region of SWP/TWP. The 5' regions of the three WPs are completely different from each other. In the low annealing temperature cycle of secondary or tertiary PER-PCR, the short overlap mediates the annealing of the WP to the previous WP site, thus producing a series of single-stranded DNAs (ssDNA). However, the 5' mismatch between the two WPs prevents the template DNA from synthesizing the WP complement at its 3' end. In the next high annealing temperature cycles, the target ssDNA is exponentially amplified because it is defined by both the WP and sequence-specific primer, while non-target ssDNA cannot be amplified as it lacks a binding site for at least one of the primers. Finally, the target DNA becomes the main PER-PCR product. This protocol has been validated by walking two selected genes. Key features • The current protocol builds upon the technique developed by Li et al. [1], which is universal to any species. • The developed protocol relies on the partial overlap among a set of three WPs. • Two rounds of nested PER-PCRs can generally result in a positive walking result. Graphical overview.
Collapse
Affiliation(s)
- Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyu Lin
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Jia M, Ding D, Liu X, Li H. Protocol to Identify Unknown Flanking DNA Using Partially Overlapping Primer-based PCR for Genome Walking. Bio Protoc 2025; 15:e5172. [PMID: 39959294 PMCID: PMC11825308 DOI: 10.21769/bioprotoc.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025] Open
Abstract
Genome walking is a popular molecular technique for accessing unknown flanking DNAs, which has been widely used in biology-related fields. Herein, a simple but accurate genome-walking protocol named partially overlapping primer (POP)-based PCR (POP-PCR) is described. This protocol exploits a POP set of three POPs to mediate genome walking. The three POPs have a 10 nt 3' overlap and 15 nt heterologous 5' regions. Therefore, a POP can partially anneal to the previous POP site only at a relatively low temperature (approximately 50 °C). In primary POP-PCR, the low-temperature (25 °C) cycle allows the primary POP to partially anneal to site(s) of an unknown flank and many sites of the genome, synthesizing many single-stranded DNAs. In the subsequent high-temperature (65 °C) cycle, the target single-stranded DNA is converted into double-stranded DNA by the sequence-specific primer, attributed to the presence of this primer complement, while non-target single-stranded DNA cannot become double-stranded because it lacks a binding site for both primers. As a result, only the target DNA is amplified in the remaining 65 °C cycles. In secondary or tertiary POP-PCR, the 50 °C cycle directs the POP to the previous POP site and synthesizes many single-stranded DNAs. However, as in the primary PCR, only the target DNA can be amplified in the subsequent 65 °C cycles. This POP-PCR protocol has many potential applications, such as screening microbes, identifying transgenic sites, or mining new genetic resources. Key features • This POP-PCR protocol, built upon the technique developed by Li et al. [1], is universal to genome walking of any species. • The established protocol relies on the 10 nt 3' overlap among a set of three POPs. • The first two rounds of POP-PCRs can generally give a positive walking outcome.
Collapse
Affiliation(s)
- Mengya Jia
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dongqin Ding
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Wu H, Pan H, Li H. Protocol to Retrieve Unknown Flanking DNA Using Fork PCR for Genome Walking. Bio Protoc 2025; 15:e5161. [PMID: 39872713 PMCID: PMC11769745 DOI: 10.21769/bioprotoc.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
PCR-based genome walking is one of the prevalent techniques implemented to acquire unknown flanking genomic DNAs. The worth of genome walking includes but is not limited to cloning full-length genes, mining new genes, and discovering regulatory regions of genes. Therefore, this technique has advanced molecular biology and related fields. However, the PCR amplification specificity of this technique needs to be further improved. Here, a practical protocol based on fork PCR is proposed for genome walking. This PCR uses a fork primer set of three arbitrary primers to execute walking amplification task, where the primary fork primer mediates walking by partially annealing to an unknown flank, and the fork-like structure formed between the three primers participates in inhibiting non-target amplification. In primary fork PCR, the low-annealing temperature (25 °C) cycle allows the primary fork primer to anneal to many sites of the genome, synthesizing a cluster of single-stranded DNAs; the subsequent 65 °C cycle processes the target single-strand into double-strand via the site-specific primer; then, the remaining 65 °C cycles selectively enrich this target DNA. However, any non-target single-stranded DNA formed in the 25 °C cycle cannot be further processed in the following 65 °C cycles because it lacks an exact binding site for any primer. Secondary, or even tertiary nested fork PCR further selectively enriches the target DNA. The practicability of fork PCR was validated by walking three genes in Levilactobacillus brevis CD0817 and one gene in Oryza sativa. The results indicated that the proposed protocol can serve as a supplement to the existing genome walking protocols. Key features • This protocol builds upon the method developed by Pan et al. [1], which is applicable to genome-walking for any species. • The developed protocol is a random priming PCR-based genome-walking scheme. • Two rounds of nested fork PCR amplifications suffice to release a positive walking result.
Collapse
Affiliation(s)
- Hongjing Wu
- Nanchang University College of Science and Technology, Nanchang, China
| | - Hao Pan
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Wang R, Gu Y, Chen H, Tian B, Li H. Uracil base PCR implemented for reliable DNA walking. Anal Biochem 2025; 696:115697. [PMID: 39442604 DOI: 10.1016/j.ab.2024.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
PCR-based DNA walking is of efficacy for capturing unknown flanking genomic sequences. Here, an uracil base PCR (UB-PCR) with satisfying specificity has been devised for DNA walking. Primary UB-PCR replaces thymine base with uracil base, resulting in a primary PCR product composed of U-DNAs. A single-primer (primary nested sequence-specific primer) single-cycle amplification, using the four normal bases (adenine, thymine, cytosine, and guanine) as substrate, is then performed on the primary PCR product. Clearly, only those U-DNAs, ended by the primary nested sequence-specific primer at least at one side, will produce the corresponding normal single strands. Next, the single-cycle product undergoes uracil-DNA glycosylase treatment to destroy the U-DNAs, while the normal single strands are unaffected. Afterward, secondary even tertiary PCR is performed to exclusively enrich the target product. The feasibility of UB-PCR has been checked by obtaining unknown sequences bordering the three selected genetic sites.
Collapse
Affiliation(s)
- Rongrong Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yinwei Gu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Hong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
6
|
Guo X, Zhu Y, Pan Z, Pan H, Li H. Single primer site-specific nested PCR for accurate and rapid genome-walking. J Microbiol Methods 2024; 220:106926. [PMID: 38555034 DOI: 10.1016/j.mimet.2024.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Genome-walking is a molecular tool used to unveil uncharacterized DNA regions flanking a known DNA, which has been widely used in bioscience and related areas. This study developed a reliable and efficient PCR-based genome-walking approach, named as single primer site-specific nested PCR (SPN-PCR). A SPN-PCR set sequentially consists of three single-primer nested PCR amplifications. The primary relaxed thermal cycle promotes outmost nested site-specific primer (NSSP) to partially combine with numerous places on DNA template, synthesizing many single-stranded DNAs (ssDNA). Among them, the target ssDNA is exponentially amplified in the subsequent stringent cycles, as its 3' part possesses the outmost NSSP complement; but a non-target ssDNA cannot be amplified, because it does not possess such a complement. Stringent secondary and tertiary PCRs also exclusively enrich this target DNA. Finally, the target DNA product becomes predominant. The feasibility of SPN-PCR was validated by genome-walking several selected genes from two divergent species.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Yisong Zhu
- Hangzhou Xiaoshan Agricultural Development Co., Ltd., Hangzhou 311200, PR China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Hao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
7
|
Chen H, Wei C, Lin Z, Pei J, Pan H, Li H. Protocol to retrieve unknown flanking DNA sequences using semi-site-specific PCR-based genome walking. STAR Protoc 2024; 5:102864. [PMID: 38308839 PMCID: PMC10850853 DOI: 10.1016/j.xpro.2024.102864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Here, we describe a protocol based on semi-site-specific primer PCR (3SP-PCR) to access unknown flanking DNA sequences. We specify the guidelines for designing primers for 3SP-PCR. We also describe experimental procedures for the 3SP-PCR, along with PCR product purification and subsequent sequencing and analysis. For complete details on the use and execution of this protocol, please refer to Wei et al.1.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Cheng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Jinfen Pei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Hao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China.
| |
Collapse
|
8
|
Li H, Lin Z, Guo X, Pan Z, Pan H, Wang D. Primer extension refractory PCR: an efficient and reliable genome walking method. Mol Genet Genomics 2024; 299:27. [PMID: 38466442 DOI: 10.1007/s00438-024-02126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3' parts of the secondary and tertiary primers. The 5' parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5' part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Boya Bio-Pharmaceutical Group Co., Ltd, High-Tech Industrial Development Zone, Fuzhou, 344100, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
9
|
Pan H, Guo X, Pan Z, Wang R, Tian B, Li H. Fork PCR: a universal and efficient genome-walking tool. Front Microbiol 2023; 14:1265580. [PMID: 37808312 PMCID: PMC10556450 DOI: 10.3389/fmicb.2023.1265580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
The reported genome-walking methods still suffer from some deficiencies, such as cumbersome experimental steps, short target amplicon, or deep background. Here, a simple and practical fork PCR was proposed for genome-walking. The fork PCR employs a fork primer set of three random oligomers to implement walking task. In primary fork PCR, the low-stringency amplification cycle mediates the random binding of primary fork primer to some places on genome, producing a batch of single-stranded DNAs. In the subsequent high-stringency amplification, the target single-strand is processed into double-strand by the site-specific primer, but a non-target single-stranded DNA cannot be processed by any primer. As a result, only the target DNA can be exponentially amplified in the remaining high-stringency cycles. Secondary/tertiary nested fork PCR(s) further magnifies the amplification difference between the both DNAs by selectively enriching target DNA. The applicability of fork PCR was validated by walking several gene loci. The fork PCR could be a perspective substitution for the existing genome-walking schemes.
Collapse
Affiliation(s)
- Hao Pan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Rongrong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Li H, Pei J, Wei C, Lin Z, Pan H, Pan Z, Guo X, Yu Z. Sodium-Ion-Free Fermentative Production of GABA with Levilactobacillus brevis CD0817. Metabolites 2023; 13:metabo13050608. [PMID: 37233649 DOI: 10.3390/metabo13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermentation media used L-glutamic acid instead of monosodium L-glutamate as the substrate. We optimized the key factors influencing GABA formation, adopting Erlenmeyer flask fermentation. The optimized values of the key factors of glucose, yeast extract, Tween 80, manganese ion, and fermentation temperature were 10 g/L, 35 g/L, 1.5 g/L, 0.2 mM, and 30 °C, respectively. Based on the optimized data, a sodium-ion-free GABA fermentation process was developed using a 10-L fermenter. During the fermentation, L-glutamic acid powder was continuously dissolved to supply substrate and to provide the acidic environment essential for GABA synthesis. The current bioprocess accumulated GABA at up to 331 ± 8.3 g/L after 48 h. The productivity of GABA was 6.9 g/L/h and the molar conversion rate of the substrate was 98.1%. These findings demonstrate that the proposed method is promising in the fermentative preparation of GABA by lactic acid bacteria.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
11
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Protocol to access unknown flanking DNA sequences using Wristwatch-PCR for genome-walking. STAR Protoc 2023; 4:102037. [PMID: 36853735 PMCID: PMC9871321 DOI: 10.1016/j.xpro.2022.102037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Here we describe a protocol for wristwatch PCR, an approach based on wristwatch-like structure formed between walking primers to obtain unknown flanks. We specify the criteria for designing wristwatch primers and gene-specific primers. We detail how to set wristwatch primer permutations to obtain personalized walking outcomes and improve walking efficiency. We describe experimental procedures for isolating a DNA of interest using three rounds of nested wristwatch PCR as well as the subsequent steps for DNA purification, cloning, and sequencing. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).1.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, USA
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
12
|
Wei C, Lin Z, Pei J, Pan H, Li H. Semi-Site-Specific Primer PCR: A Simple but Reliable Genome-Walking Tool. Curr Issues Mol Biol 2023; 45:512-523. [PMID: 36661520 PMCID: PMC9857434 DOI: 10.3390/cimb45010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Genome-walking has been frequently applied to molecular biology and related areas. Herein, a simple but reliable genome-walking technique, termed semi-site-specific primer PCR (3SP-PCR), is presented. The key to 3SP-PCR is the use of a semi-site-specific primer in secondary PCR that partially overlaps its corresponding primary site-specific primer. A 3SP-PCR set comprises two rounds of nested amplification reactions. In each round of reaction, any primer is allowed to partially anneal to the DNA template once only in the single relaxed-stringency cycle, creating a pool of single-stranded DNAs. The target single-stranded DNA can be converted into a double-stranded molecule directed by the site-specific primer, and thus can be exponentially amplified by the subsequent high-stringency cycles. The non-target one cannot be converted into a double-strand due to the lack of a perfect binding site to any primer, and thus fails to be amplified. We validated the 3SP-PCR method by using it to probe the unknown DNA regions of rice hygromycin genes and Levilactobacillus brevis CD0817 glutamic acid decarboxylase genes.
Collapse
Affiliation(s)
- Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
13
|
Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking. Curr Issues Mol Biol 2023; 45:501-511. [PMID: 36661519 PMCID: PMC9857710 DOI: 10.3390/cimb45010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5'-end of IWP's 5'-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice.
Collapse
|
14
|
Pei J, Sun T, Wang L, Pan Z, Guo X, Li H. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet 2022; 13:969840. [PMID: 36330444 PMCID: PMC9623105 DOI: 10.3389/fgene.2022.969840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3′) to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5′ end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3′ end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.
Collapse
Affiliation(s)
- Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
15
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front Bioeng Biotechnol 2022; 10:792848. [PMID: 35497369 PMCID: PMC9039356 DOI: 10.3389/fbioe.2022.792848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5′- and 3′-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3′-end and the WWP at the 5′-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, United States
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
16
|
Kalendar R, Shustov AV, Schulman AH. Palindromic Sequence-Targeted (PST) PCR, Version 2: An Advanced Method for High-Throughput Targeted Gene Characterization and Transposon Display. FRONTIERS IN PLANT SCIENCE 2021; 12:691940. [PMID: 34239528 PMCID: PMC8258406 DOI: 10.3389/fpls.2021.691940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alan H. Schulman
- Viikki Plant Science Centre, HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
17
|
Zhou G, Pan Q, Hu Z, Qiu J, Yu Z. Heterologous Expression and Characterization of Flavinadenine Dinucleotide Synthetase from Candida famata for Flavin Adenine Dinucleotide Production. Protein Pept Lett 2021; 28:229-239. [PMID: 32640951 DOI: 10.2174/0929866527666200708151327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavin adenine dinucleotide (FAD) is a redox-active coenzyme that regulates several important enzymatic reactions during metabolism. FAD is used in the medicinal and food industries and FAD supplements have been used to treat some inheritable diseases. FAD can be biosynthesized from flavin mononucleotide (FMN) and adenosine triphosphate (ATP), catalyzed by FAD synthetase (FADS). OBJECTIVE The aim of this study was to heterologously express the gene encoding FADS from the flavinogenic yeast Candida famata (FADSCf) for biosynthesis of FAD. METHODS The sequence encoding FADSCf was retrieved and heterologously expressed in Escherichia coli. The structure and enzymatic properties of recombinant FADSCf were characterized. RESULTS FADSCf (279 amino acids) was successfully expressed in E. coli BL21 (DE3), with a theoretical molecular weight of 32299.79 Da and an isoelectric point of 6.09. Secondary structural analysis showed that the number of α-helices was 2-fold higher than the number of β-sheets, indicating that the protein was highly hydrophilic. Under fixed ATP concentration, FADSCf had a Km of 0.04737±0.03158 mM and a Vmax of 3.271±0.79 μM/min/mg. Under fixed FMN concentration, FADSCf had a Km of 0.1214±0.07464 mM and a Vmax of 2.6695±0.3715 μM/min/mg. Enzymatic reactions in vitro showed that expressed FADSCf could form 80 mM of FAD per mg of enzyme after 21 hours under the following conditions: 0.5 mM FMN, 5 mM ATP and 10 mM Mg2+. CONCLUSION Under optimized conditions (0.5 mM FMN, 5 mM ATP and 10 mM Mg2+), the production of FAD reached 80 mM per mg of FADSCf after a 21-hour reaction. Our results indicate that purified recombinant FADSCf can be used for the biosynthesis of FAD.
Collapse
Affiliation(s)
- Guoqiang Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou-310014, China
| | - Qiaoqiao Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou-310014, China
| | - Zeyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou-310014, China
| | - Juanping Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou-310014, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou-310014, China
| |
Collapse
|
18
|
Simple innovative adaptor to improve genome walking with convenient PCR. J Genet Eng Biotechnol 2020; 18:64. [PMID: 33083895 PMCID: PMC7575660 DOI: 10.1186/s43141-020-00082-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Various polymerase chain reaction (PCR)-based methods have been applied for the development of genome walking (GW) technique. These methods which could be based on the application of restriction enzymes or primers have various efficiencies to identify the unknown nucleotide sequences. The present study was conducted to design a new innovative double-strand adaptor using MAP30 gene sequence of Momordica charantia plant as a model to improve genome walking with convenient PCR. RESULTS The adaptor was designed using multiple restriction sites of Hind III, BamH I, EcoR I, and Bgl II enzymes with no restriction site in a known sequence of the MAP30 gene. In addition, no modification was required to add phosphate, amine, or other groups to the adaptor, since restriction enzyme digestion of double-strand adaptor provided the 5' phosphate group. Here, preparation of the phosphate group in the genomic DNA of the plant digestion with restriction enzymes was performed followed by ligation with digested adaptor containing 5' phosphate group. CONCLUSION PCR was done to amplify the unknown sequence using MAP30 gene-specific primer and adaptor primer. Results confirmed the ability of the technique for successful identification of the sequence. Consequently, a newly designed adaptor in the developed technique reduced the time and cost of the method compared to the conventional genome walking; also, cloning and culturing of bacterial steps could be eliminated.
Collapse
|
19
|
Palindromic sequence-targeted (PST) PCR: a rapid and efficient method for high-throughput gene characterization and genome walking. Sci Rep 2019; 9:17707. [PMID: 31776407 PMCID: PMC6881309 DOI: 10.1038/s41598-019-54168-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022] Open
Abstract
Genome walking (GW) refers to the capture and sequencing of unknown regions in a long DNA molecule that are adjacent to a region with a known sequence. A novel PCR-based method, palindromic sequence-targeted PCR (PST-PCR), was developed. PST-PCR is based on a distinctive design of walking primers and special thermal cycling conditions. The walking primers (PST primers) match palindromic sequences (PST sites) that are randomly distributed in natural DNA. The PST primers have palindromic sequences at their 3′-ends. Upstream of the palindromes there is a degenerate sequence (8–12 nucleotides long); defined adapters are present at the 5′-termini. The thermal cycling profile has a linear amplification phase and an exponential amplification phase differing in annealing temperature. Changing the annealing temperature to switch the amplification phases at a defined cycle controls the balance between sensitivity and specificity. In contrast to traditional genome walking methods, PST-PCR is rapid (two to three hours to produce GW fragments) as it uses only one or two PCR rounds. Using PST-PCR, previously unknown regions (the promoter and intron 1) of the VRN1 gene of Timothy-grass (Phleum pratense L.) were captured for sequencing. In our experience, PST-PCR had higher throughput and greater convenience in comparison to other GW methods.
Collapse
|