1
|
Organosolv Fractionation of Birch Sawdust: Establishing a Lignin-First Biorefinery. Molecules 2021; 26:molecules26216754. [PMID: 34771161 PMCID: PMC8588145 DOI: 10.3390/molecules26216754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The use of residual biomass for bioconversions makes it possible to decrease the output of fossil-based chemicals and pursue a greener economy. While the use of lignocellulosic material as sustainable feedstock has been tried at pilot scale, industrial production is not yet economically feasible, requiring further technology and feedstock optimization. The aim of this study was to examine the feasibility of replacing woodchips with residual sawdust in biorefinery applications. Woodchips can be used in value-added processes such as paper pulp production, whereas sawdust is currently used mainly for combustion. The main advantages of sawdust are its large supply and a particle size sufficiently small for the pretreatment process. Whereas, the main challenge is the higher complexity of the lignocellulosic biomass, as it can contain small amounts of bark and cambium. Here, we studied the fractionation of birch sawdust by organosolv pretreatment at two different temperatures and for two different durations. We evaluated the efficiency of fractionation into the three main fractions: lignin, cellulose, and hemicellulose. The cellulose content in pretreated biomass was as high as 69.2%, which was nearly double the amount in untreated biomass. The obtained lignin was of high purity, with a maximum 4.5% of contaminating sugars. Subsequent evaluation of the susceptibility of pretreated solids to enzymatic saccharification revealed glucose yields ranging from 75% to 90% after 48 h but reaching 100.0% under the best conditions. In summary, birch sawdust can be successfully utilized as a feedstock for organosolv fractionation and replace woodchips to simplify and lower the costs of biorefinery processes.
Collapse
|
2
|
Ferreira JA, Taherzadeh MJ. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. BIORESOURCE TECHNOLOGY 2020; 299:122695. [PMID: 31918973 DOI: 10.1016/j.biortech.2019.122695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Lignocellulose-based processes for production of value-added products still face bottlenecks to attain feasibility. The key might lie on the biorefining of all lignocellulose main polymers, that is, cellulose, hemicellulose and lignin. Lignin, considered an impediment in the access of cellulose and normally considered for energy recovery purposes, can give a higher contribution towards profitability of lignocellulosic biorefineries. Organosolv pretreatment allows selective fractionation of lignocellulose into separate cellulose-, hemicellulose- and lignin-rich streams. Ethanol organosolv and wood substrates dominated the research studies, while a wide range of substrates need definition on the most suitable organosolv pretreatment systems. Techno-economic and environmental analyses of organosolv-based processes as well as proper valorization strategies of the hemicellulose-rich fraction are still scarce. In view of dominance of ethanol organosolv with high delignification yields and high-purity of the recovered cellulose-rich fractions, close R & D collaboration with 1st generation ethanol plants might boost commercialization.
Collapse
Affiliation(s)
- Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
3
|
Tailoring Celluclast® Cocktail’s Performance towards the Production of Prebiotic Cello-Oligosaccharides from Waste Forest Biomass. Catalysts 2019. [DOI: 10.3390/catal9110897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The main objective of this study focused on the sustainable production of cellobiose and other cellulose-derived oligosaccharides from non-edible sources, more specifically, from forest residues. For this purpose, a fine-tuning of the performance of the commercially available enzyme mixture Celluclast® was conducted towards the optimization of cellobiose production. By enzyme reaction engineering (pH, multi-stage hydrolysis with buffer exchange, addition of β-glucosidase inhibitor), a cellobiose-rich product with a high cellobiose to glucose ratio (37.4) was achieved by utilizing organosolv-pretreated birch biomass. In this way, controlled enzymatic hydrolysis combined with efficient downstream processing, including product recovery and purification through ultrafiltration and nanofiltration, can potentially support the sustainable production of food-grade oligosaccharides from forest biomass. The potential of the hydrolysis product to support the growth of two Lactobacilli probiotic strains as a sole carbon source was also demonstrated.
Collapse
|
4
|
Martín-Sampedro R, Santos JI, Eugenio ME, Wicklein B, Jiménez-López L, Ibarra D. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Int J Biol Macromol 2019; 140:311-322. [PMID: 31408656 DOI: 10.1016/j.ijbiomac.2019.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022]
Abstract
Lignin streams produced in biorefineries are commonly used to obtain energy. In order to increase the competitiveness of this industry, new lignin valorization routes are necessary, for which a depth characterization of this biological macromolecule is essential. In this context, this study analyzed lignin streams of Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and during the subsequent enzymatic hydrolysis. These lignins included dissolved lignins from pre-treatment liquors and saccharification lignins from pre-treated materials. Chemical composition and structural features were analyzed by analytical standard methods and Fourier Transform Infrared spectroscopy (FTIR), size exclusion chromatography (SEC), 13C solid state nuclear magnetic resonance (13C NMR) and 1H-13C two-dimensional nuclear magnetic resonance (2D NMR); while thermal characterization included thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In general, all studied lignins contained a predominance of β-O-4' aryl ether linkages, followed by resinol (β-β') and phenylcoumaran (β-5'), with a predominance of syringyl over guaiacyl and hydroxyphenyl units. Nevertheless, the dissolved lignins revealed a removal of linkages, especially β-O-4', leading to an enrichment of phenolic groups. Moreover, high thermal stability and good thermoplasticity were characteristics of these lignins. Contrary, the saccharification lignins exhibited a more intact structure, but with an important remaining carbohydrates content.
Collapse
Affiliation(s)
| | - José I Santos
- General Services of Research SGIKER, University of the Basque Country (UPV/EHU), Edificio Joxe Mari Korta Avda. Tolosa 72, Donostia-San Sebastian 20018, Spain
| | - María E Eugenio
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - Bernd Wicklein
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Laura Jiménez-López
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- INIA-CIFOR, Forestry Products Department, Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| |
Collapse
|
5
|
Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P. Lignin-first biomass fractionation using a hybrid organosolv - Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. BIORESOURCE TECHNOLOGY 2019; 273:521-528. [PMID: 30471644 DOI: 10.1016/j.biortech.2018.11.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 05/05/2023]
Abstract
For a transition to a sustainable society, fuels, chemicals, and materials should be produced from renewable resources. Lignocellulosic biomass constitutes an abundant and renewable feedstock; however, its successful application in a biorefinery requires efficient fractionation into its components; cellulose, hemicellulose and lignin. Here, we demonstrate that a newly established hybrid organosolv - steam explosion pretreatment can effectively fractionate spruce biomass to yield pretreated solids with high cellulose (72% w/w) and low lignin (delignification up to 79.4% w/w) content. The cellulose-rich pretreated solids present high saccharification yields (up to 61% w/w) making them ideal for subsequent bioconversion processes. Moreover, under high-gravity conditions (22% w/w) we obtained an ethanol titer of 61.7 g/L, the highest so far reported for spruce biomass. Finally, the obtained high-purity lignin is suitable for various advanced applications. In conclusion, hybrid organosolv pretreatment could offer a closed-loop biorefinery while simultaneously adding value to all biomass components.
Collapse
Affiliation(s)
- Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Vijayendran Raghavendran
- Chalmers University of Technology, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Olga Yakimenko
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Gustav Persson
- Chalmers University of Technology, Department of Physics, Fysikgränd 3, Göteborg SE-412 96, Sweden
| | - Eva Olsson
- Chalmers University of Technology, Department of Physics, Fysikgränd 3, Göteborg SE-412 96, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| |
Collapse
|
6
|
Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals. Catalysts 2019. [DOI: 10.3390/catal9010043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is an abundant renewable source of chemicals and fuels. Lignin, one of biomass main structural components being widely available as by-product in the pulp and paper industry and in the process of second generation bioethanol, can provide phenolic and aromatic compounds that can be utilized for the manufacture of a wide variety of polymers, fuels, and other high added value products. The effective depolymerisation of lignin into its primary building blocks remains a challenge with regard to conversion degree and monomers selectivity and stability. This review article focuses on the state of the art in the liquid phase reductive depolymerisation of lignin under relatively mild conditions via catalytic hydrogenolysis/hydrogenation reactions, discussing the effect of lignin type/origin, hydrogen donor solvents, and related transfer hydrogenation or reforming pathways, catalysts, and reaction conditions.
Collapse
|
7
|
Muraleedharan MN, Zouraris D, Karantonis A, Topakas E, Sandgren M, Rova U, Christakopoulos P, Karnaouri A. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:296. [PMID: 30386433 PMCID: PMC6204277 DOI: 10.1186/s13068-018-1294-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant lignocellulose in the presence of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. One of the possible systems that provide electrons to the LPMOs active site and promote the polysaccharide degradation involves the mediation of phenolic agents, such as lignin, low-molecular-weight lignin-derived compounds and other plant phenols. In the present work, the interaction of the bulk insoluble lignin fraction extracted from pretreated biomass with LPMOs and the ability to provide electrons to the active site of the enzymes is studied. RESULTS The catalytic efficiency of three LPMOs, namely MtLPMO9 with C1/C4 regioselectivity, PcLPMO9D which is a C1 active LPMO and NcLPMO9C which is a C4 LPMO, was evaluated in the presence of different lignins. It was correlated with the physicochemical and structural properties of lignins, such as the molecular weight and the composition of aromatic and aliphatic hydroxyl groups. Moreover, the redox potential of lignins was determined with the use of large amplitude Fourier Transform alternating current cyclic voltammetry method and compared to the formal potential of the Cu (II) center in the active site of the LPMOs, providing more information about the lignin-LPMO interaction. The results demonstrated the existence of low-molecular weight lignin-derived compounds that are diffused in the reaction medium, which are able to reduce the enzyme active site and subsequently utilize additional electrons from the insoluble lignin fraction to promote the LPMO oxidative activity. Regarding the bulk lignin fractions, those isolated from the organosolv pretreated materials served as the best candidates in supplying electrons to the soluble compounds and, finally, to the enzymes. This difference, based on biomass pretreatment, was also demonstrated by the activity of LPMOs on natural substrates in the presence and absence of ascorbic acid as additional reducing agent. CONCLUSIONS Lignins can support the action of LPMOs and serve indirectly as electron donors through low-molecular-weight soluble compounds. This ability depends on their physicochemical and structural properties and is related to the biomass source and pretreatment method.
Collapse
Affiliation(s)
- Madhu Nair Muraleedharan
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Dimitrios Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|