1
|
Grajales-Velázquez J, Soto-Urzúa L, Sánchez-Mora E, Gervacio-Arciniega JJ, González-Ronquillo AL, Martínez-Soto LJ, Martínez-Martínez MDLÁ, Martínez-Morales LJ. Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres. Int J Biol Macromol 2025; 288:139406. [PMID: 39755319 DOI: 10.1016/j.ijbiomac.2024.139406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method. A normal size distribution around 27 and 208 nm characterizes gold and PHB colloids, respectively. The Ag-NP colloid has a size distribution with a positive skewness and a mean size of ~19.6 nm. Ag-NP surface plasmon resonance is 400 nm, and Au-NP is 526 nm. A resonance shift is observed when the metal-NPs are on the PHB-NSs. Numerical calculations based on the discrete dipole approximation theory provide insight into the resonance position of the composite as a function of the nanoparticle concentration. The bactericidal effect on the viability of Escherichia coli and Staphylococcus aureus strains was evaluated. Ag-NPs were more effective against E. coli than Au-NPs, while the latter were more effective against S. aureus than the former. Interestingly, the PHB-NSs caused a delay in the bacterial activity of both metal-NPs. We proposed a model to explain this delay and the increase in contact time.
Collapse
Affiliation(s)
- Jair Grajales-Velázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico
| | - Lucía Soto-Urzúa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico.
| | - Enrique Sánchez-Mora
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico.
| | - José Juan Gervacio-Arciniega
- Conacyt-Facultad de Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 18 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico
| | - Ana Lilia González-Ronquillo
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico.
| | - Lino Javier Martínez-Soto
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico
| | - María De Los Ángeles Martínez-Martínez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico.
| | - Luis Javier Martínez-Morales
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico.
| |
Collapse
|
2
|
Garciglia-Mercado C, Contreras CA, Choix FJ, de-Bashan LE, Gómez-Anduro GA, Palacios OA. Metabolic and physiological adaptations of microalgal growth-promoting bacterium Azospirillum brasilense growing under biogas atmosphere: a microarray-based transcriptome analysis. Arch Microbiol 2024; 206:173. [PMID: 38492040 DOI: 10.1007/s00203-024-03890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.
Collapse
Affiliation(s)
| | - Claudia A Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J Choix
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
- CONAHCYT-Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Luz E de-Bashan
- The Bashan Institute of Science, Auburn, AL, USA
- Departament of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico.
- The Bashan Institute of Science, Auburn, AL, USA.
| |
Collapse
|
3
|
Aguilar-Carrillo Y, Soto-Urzúa L, Martínez-Martínez MDLÁ, Becerril-Ramírez M, Martínez-Morales LJ. Computational Analysis of the Tripartite Interaction of Phasins (PhaP4 and 5)-Sigma Factor (σ 24)-DNA of Azospirillum brasilense Sp7. Polymers (Basel) 2024; 16:611. [PMID: 38475295 DOI: 10.3390/polym16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Azospirillum brasilense Sp7 produces PHB, which is covered by granule-associated proteins (GAPs). Phasins are the main GAPs. Previous studies have shown phasins can regulate PHB synthesis. When A. brasilense grows under stress conditions, it uses sigma factors to transcribe genes for survival. One of these factors is the σ24 factor. This study determined the possible interaction between phasins and the σ24 factor or phasin-σ24 factor complex and DNA. Three-dimensional structures of phasins and σ24 factor structures were predicted using the I-TASSER and SWISS-Model servers, respectively. Subsequently, a molecular docking between phasins and the σ24 factor was performed using the ClusPro 2.0 server, followed by molecular docking between protein complexes and DNA using the HDOCK server. Evaluation of the types of ligand-receptor interactions was performed using the BIOVIA Discovery Visualizer for three-dimensional diagrams, as well as the LigPlot server to obtain bi-dimensional diagrams. The results showed the phasins (Pha4Abs7 or Pha5Abs7)-σ24 factor complex was bound near the -35 box of the promoter region of the phaC gene. However, in the individual interaction of PhaP5Abs7 and the σ24 factor, with DNA, both proteins were bound to the -35 box. This did not occur with PhaP4Abs7, which was bound to the -10 box. This change could affect the transcription level of the phaC gene and possibly affect PHB synthesis.
Collapse
Affiliation(s)
- Yovani Aguilar-Carrillo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Lucía Soto-Urzúa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - María De Los Ángeles Martínez-Martínez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Mirian Becerril-Ramírez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Luis Javier Martínez-Morales
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| |
Collapse
|
4
|
Enhancement of polyhydroxybutyrate production by introduction of heterologous phasin combination in Escherichia coli. Int J Biol Macromol 2023; 225:757-766. [PMID: 36400208 DOI: 10.1016/j.ijbiomac.2022.11.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Phasin is a surface-binding protein of polyhydroxyalkanoate (PHA) granules that is encoded by the phaP gene. As its expression increases, PHA granules become smaller, to increase their surface area, and are densely packed inside the cell, thereby increasing the PHA content. A wide range of PHA-producing bacteria have phaP genes; however, their PHA productivity differs, although they are derived from the cognate bacterial host cell. Modulating phasin expression could be a new strategy to enhance PHA production. This study aimed to characterize the effect of heterologous phasins on the reconstitution of E. coli BL21(DE3) and determine the best synergistic phaP gene combination to produce polyhydroxybutyrate (PHB). We identified novel phasins from a PHB high-producer strain, Halomonas sp. YLGW01, and introduced a combination of phaP genes into Escherichia coli. The resulting E. coli phaP1,3 strain had enhanced PHB production by 2.9-fold, leading to increased cell mass and increased PHB content from 48 % to 65 %. This strain also showed increased tolerance to inhibitors, such as furfural and vanillin, enabling the utilization of lignocellulose biosugar as a carbon source. These results suggested that the combination of phaP1 and phaP3 genes from H. sp. YLGW01 could increase PHB production and robustness.
Collapse
|
5
|
Argiz L, Correa-Galeote D, Val Del Río Á, Mosquera-Corral A, González-Cabaleiro R. Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150761. [PMID: 34624285 DOI: 10.1016/j.scitotenv.2021.150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The lipid fraction of the effluents generated in several food-processing activities can be transformed into polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs), through open culture biotechnologies. Although competition between storing and non-storing populations in mixed microbial cultures (MMCs) has been widely studied, the right selective environment allowing for the robust enrichment of a community when different types of accumulators coexist is still not clear. In this research, comprehensive metabolic analyses of PHA and TAG synthesis and degradation, and concomitant respiration of external carbon, were used to understand and explain the changes observed in a laboratory-scale bioreactor fed with the lipid-rich fraction (mainly oleic acid) of a wastewater stream produced in the fish-canning industry. It was concluded that the mode of oxygen, carbon, and nitrogen supply determines the enrichment of the culture in specific populations, and hence the type of intracellular compounds preferentially accumulated. Coupled carbon and nitrogen feeding regime mainly selects for TAG producers whereas uncoupled feeding leads to PHA or TAG production function of the rate of carbon supply under specific aeration rates and feast and famine phases lengths.
Collapse
Affiliation(s)
- Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - David Correa-Galeote
- Department of Microbiology and Institute of Water Research, Universidad de Granada, Granada, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Rebeca González-Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|