1
|
Harakawa K, Kawarai S, Kryukov K, Nakagawa S, Moriya S, Imakawa K. Buccal Swab Samples from Japanese Brown Cattle Fed with Limonite Reveal Altered Rumen Microbiome. Animals (Basel) 2024; 14:1968. [PMID: 38998081 PMCID: PMC11240510 DOI: 10.3390/ani14131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The areas of the Mount Aso grasslands in Kumamoto, Japan, are the primary location for the breeding of the Kumamoto strain of Japanese Brown cattle (JBRK). Although Aso limonite, deposited by volcanic ash and magma, has been commonly fed to pregnant JBRK in this area, the mechanisms of its salutary effects on pregnant JBRK have not yet been elucidated. Approximately 100 days before the expected day of calf delivery, seven JBRK (four supplemented with limonite and three controls without limonite) were assigned to this study, from which a buccal swab was collected at the highest rumination every 30 days for 90 days. DNA extracted from these swabs was then analyzed using a 16S rRNA gene amplicon sequence analysis. Statistically significant differences between the two groups were discovered through beta-diversity analysis, though results from alpha-diversity analysis were inconclusive. The microbiota identified were classified into six clusters, and three of the main clusters were core-rumen bacteria, primarily cellulose digestion in cluster 1, oral bacteria in cluster 2, and non-core-rumen bacteria in cluster 3. In the limonite group, core-rumen bacteria decreased while non-core-rumen bacteria increased, suggesting that limonite feeding alters rumen microbiota, particularly activation of non-core-rumen microbiota.
Collapse
Affiliation(s)
- Kentaro Harakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| | - Shinpei Kawarai
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima 411-8540, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara 259-1193, Kanagawa, Japan
| | - Shigeharu Moriya
- Photonics Control Technology Team, Riken Center for Advanced Photonics, Numazu 410-8601, Shizuoka, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| |
Collapse
|
2
|
Jang Y, Lee SH, Kim NK, Ahn CH, Rittmann BE, Park HD. Biofilm characteristics for providing resilient denitrification in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2023; 231:119654. [PMID: 36702020 DOI: 10.1016/j.watres.2023.119654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In a hydrogen-based membrane biofilm reactor (H2-MBfR), the biofilm thickness is considered to be one of the most important factors for denitrification. Thick biofilms in MBfRs are known for low removal fluxes owing to their resistance to substrate transport. In this study, the H2-MBfR was operated under various loading rates of oxyanions, such as NO3-N, SO4-S, and ClO4- at an H2 flux of 1.06 e- eq/m2-d. The experiment was initiated with NO3-N, SO4-S, and ClO4- loadings of 0.464, 0.026, and 0.211 e- eq/m2-d, respectively, at 20 °C. Under the most stressful conditions, the loading rates increased simultaneously to 1.911, 0.869, and 0.108 e- eq/m2-d, respectively, at 10 °C. We observed improved performance in significantly thicker biofilms (approximately 2.7 cm) compared to previous studies using a denitrifying H2-MBfR for 120 days. Shock oxyanion loadings led to a decrease in total nitrogen (TN) removal by 20 to 30%, but TN removal returned to 100% within a few days. Similarly, complete denitrification was observed, even at 10 °C. The protective function and microbial diversity of the thick biofilm may allow stable denitrification despite stress-imposing conditions. In the microbial community analysis, heterotrophs were dominant and acetogens accounted for 11% of the biofilm. Metagenomic results showed a high abundance of functional genes involved in organic carbon metabolism and homoacetogenesis. Owing to the presence of organic compounds produced by acetogens and autotrophs, heterotrophic denitrification may occur simultaneously with autotrophic denitrification. As a result, the total removal flux of oxyanions (1.84 e- eq/m2-d) far exceeded the H2 flux (1.06 e- eq/m2-d). Thus, the large accumulation of biofilms could contribute to good resilience and enhanced removal fluxes.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na-Kyung Kim
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chang Hoon Ahn
- The graduate school of construction engineering, Chung-ang University, Seoul, 06974, Republic of Korea
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States of America.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
TOYA S, SONODA T, MAEDA T. Effect of Sodium Tungstate on Nucleic Acid Extraction from Anaerobic Digestion Sludge —Efficacy of Fluorescence Measurement in the Ribonucleic Acid Quantification—. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shotaro TOYA
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
| | - Tatsuhiko SONODA
- Materials Chemistry Course, Department of Creative Engineering, National Institute of Technology, Kitakyushu College
| | - Toshinari MAEDA
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
| |
Collapse
|
4
|
Maeda T, Sabidi S, Sanchez-Torres V, Hoshiko Y, Toya S. Engineering anaerobic digestion via optimizing microbial community: effects of bactericidal agents, quorum sensing inhibitors, and inorganic materials. Appl Microbiol Biotechnol 2021; 105:7607-7618. [PMID: 34542684 DOI: 10.1007/s00253-021-11536-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anaerobic digestion of sewage sludge (SS) is one of the effective ways to reduce the waste generated from human life activities. To date, there are many reports to improve or repress methane production during the anaerobic digestion of SS. In the anaerobic digestion process, many microorganisms work positively or negatively, and as a result of their microbe-to-microbe interaction and regulation, methane production increases or decreases. In other words, understanding the complex control mechanism among the microorganisms and identifying the strains that are key to increase or decrease methane production are important for promoting the advanced production of bioenergy and beneficial compounds. In this mini-review, the literature on methane production in anaerobic digestion has been summarized based on the results of antibiotic addition, quorum sensing control, and inorganic substance addition. By optimizing the activity of microbial groups in SS, methane or acetate can be highly produced. KEY POINTS: • Bactericidal agents such as an antibiotic alter microbial community for enhanced CH4 production. • Bacterial interaction via quorum sensing is one of the key points for biofilm and methane production. • Anaerobic digestion can be altered in the presence of several inorganic materials.
Collapse
Affiliation(s)
- Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| | - Sarah Sabidi
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Santander, Colombia
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Shotaro Toya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| |
Collapse
|
5
|
Kuncser AC, Vlaicu ID, Pavel OD, Zavoianu R, Badea M, Radu D, Culita DC, Rostas AM, Olar R. Soft synthesis and characterization of goethite-based nanocomposites as promising cyclooctene oxidation catalysts. RSC Adv 2021; 11:27589-27602. [PMID: 35480697 PMCID: PMC9037824 DOI: 10.1039/d1ra04211d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/01/2021] [Indexed: 11/21/2022] Open
Abstract
Goethite based nanocomposites with a different composition such as 6FeO(OH)·MnO(OH)·0.5H2O (Mn-composite), xFeO(OH)·M(OH)2·yH2O (Co-composite (M: Co, x = 12, y = 3), Ni-composite (M: Ni, x = 7, y = 2)) and xFeO(OH)·MO·yH2O (Cu-composite (M: Cu, x = 5.5, y = 3), Zn-composite (M: Zn, x = 6, y = 1.5)) have been prepared by a soft chemical synthesis consisting in acetate hydrolysis. The data provided by Fourier transform infrared (FTIR), ultraviolet-visible-near infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR) and Mössbauer spectra account for a slight modification of all composites' physicochemical properties compared to the starting material. Powder X-ray diffraction and transmission electron microscopy (TEM) investigations revealed the secondary phase nature and presence along with that of goethite. The TEM data are also consistent with a nano rod-like morphology with a 5–10 nm width and an average length of 40 nm. The catalytic oxidation of cyclooctene with O2 using isobutyraldehyde as reductant and acetonitrile as a solvent was performed in batch conditions for 5 h at room temperature. The selectivity for the epoxide was higher than 99% for all tested solids. The conversion of cyclooctene decreased from 55% to 4% following the same order of variance as the base/acid sites ratio: Mn-composite > Fe-composite > Co-composite > Ni-composite > Zn-composite > Cu-composite. The 6FeO(OH)·MnO(OH)·0.5H2O (Mn-composite) exhibited the most promising catalytic activity in cyclooctene oxidation, which can be correlated with the redox ability of Mn(iii) combined with the increased base character of this solid. The catalytic activity of this sample decreases by 10% after several successive reaction cycles. Goethite based nanocomposites with different compositions (6FeO(OH)·MnO(OH)·0.5H2O, xFeO(OH)·M(OH)2·yH2O or xFeO(OH)·MO·yH2O where M = Co, Ni, Cu or Zn) have been prepared by a soft chemical synthesis via acetate hydrolysis.![]()
Collapse
Affiliation(s)
- Andrei Cristian Kuncser
- National Institute of Materials Physics, Laboratory of Atomic Structures and Defects in Advanced Materials 405A Atomiştilor Str., Măgurele Ilfov 077125 Romania
| | - Ioana Dorina Vlaicu
- National Institute of Materials Physics, Laboratory of Atomic Structures and Defects in Advanced Materials 405A Atomiştilor Str., Măgurele Ilfov 077125 Romania
| | - Octavian Dumitru Pavel
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis 4-12 Regina Elisabeta Av. S3 Bucharest 030018 Romania
| | - Rodica Zavoianu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis 4-12 Regina Elisabeta Av. S3 Bucharest 030018 Romania
| | - Mihaela Badea
- University of Bucharest, Faculty of Chemistry, Department of Inorganic Chemistry 90-92 Panduri Str. 050663 Bucharest Romania
| | - Dana Radu
- National Institute of Materials Physics, Laboratory of Atomic Structures and Defects in Advanced Materials 405A Atomiştilor Str., Măgurele Ilfov 077125 Romania
| | - Daniela Cristina Culita
- Ilie Murgulescu Institute of Physical Chemistry 202 Splaiul Independentei 060021 Bucharest Romania
| | - Arpad Mihai Rostas
- National Institute of Materials Physics, Laboratory of Atomic Structures and Defects in Advanced Materials 405A Atomiştilor Str., Măgurele Ilfov 077125 Romania
| | - Rodica Olar
- University of Bucharest, Faculty of Chemistry, Department of Inorganic Chemistry 90-92 Panduri Str. 050663 Bucharest Romania
| |
Collapse
|
6
|
Uchida A, Yasuma T, Takeshita A, Toda M, Okano Y, Nishihama K, D'Alessandro-Gabazza CN, Fridman D'Alessandro V, Inoue C, Takagi T, Mukaiyama H, Takagi N, Shimizu K, Yano Y, Gabazza EC. Oral Limonite Supplement Ameliorates Glucose Intolerance in Diabetic and Obese Mice. J Inflamm Res 2021; 14:3089-3105. [PMID: 34276223 PMCID: PMC8277451 DOI: 10.2147/jir.s320451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Diabetes mellitus is a serious threat to public health worldwide. It causes a substantial economic burden, mental and physical disabilities, poor quality of life, and high mortality. Limonite is formed when iron-rich materials from the underground emerge and oxidized on the ground surface. It is currently used to purify contaminated water, absorption of irritant gases, and improve livestock breeding. Limonite can change the composition of environmental microbial communities. In the present study, we evaluated whether limonite can ameliorate glucose metabolism abnormalities by remodeling the gut microbiome. Methods The investigation was performed using mouse models of streptozotocin-induced diabetes mellitus and high-calorie diet-induced metabolic syndrome. Results Oral limonite supplement was associated with significant body weight recovery, reduced glycemia with improved insulin secretion, increased number of regulatory T cells, and abundant beneficial gut microbial populations in mice with diabetes mellitus compared to control. Similarly, mice with obesity fed with limonite supplements had significantly reduced body weight, insulin resistance, steatohepatitis, and systemic inflammatory response with significant gut microbiome remodeling. Conclusion This study demonstrates that limonite supplement ameliorates abnormal glucose metabolism in diabetes mellitus and obesity. Gut microbiome remodeling, inhibition of inflammatory cytokines, and the host immune response regulation may explain the limonite’s beneficial activity under pathological conditions in vivo.
Collapse
Affiliation(s)
- Akihiro Uchida
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Atsuro Takeshita
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuko Okano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|