1
|
Zheng Z, Gao J, Ma Y, Hou X. Cellular and Molecular Mechanisms of Phytochemicals Against Inflammation-Associated Diseases and Viral Infection. Cell Biol Int 2025; 49:606-633. [PMID: 40091269 DOI: 10.1002/cbin.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Inflammation-associated diseases have become widespread and pose a significant threat to human health, and the therapeutic methods for diverse diseases are inadequate due to the undesirable effects of synthetic ingredients. Recently, more and more evidence indicated that phytochemicals, plant secondary metabolites, have numerous therapeutic functions against human diseases via affecting a variety of mechanisms with their distinct advantages of high efficiency and low toxicity. Here, we highlight the mechanisms of phytochemicals to hinder inflammation-associated diseases (including Inflammatory diseases, cardiovascular diseases, metabolic syndrome, neurological disorders, skin diseases, respiratory diseases, kidney diseases, gastrointestinal diseases, retinal diseases, viral infections) by regulating the crosstalk among various signal cascades (including MicroRNAs, SIRT1, DNMTs, NF-κB, NLRP3, TGF-β, the Gasdermin-mediated pyroptosis pathway), which can be considered as a novel and potential therapeutic strategy. Furthermore, phytochemicals could prevent virus infection by disturbing different targets in the virus replication cycle. However, natural plants have shown limited bioavailability due to their low water solubility, the use of adjuvants such as liposomal phytochemicals, phytochemical nanoparticles and phytochemicals-phospholipid complex promote their bioavailability to exhibit beneficial effects against various diseases. The purpose of this review is to explore the molecular mechanisms and promising applications of phytochemicals in the fields of inflammation-associated diseases and virus infection to provide some direction.
Collapse
Affiliation(s)
- Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yubing Ma
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
3
|
Xiong S, Xie J, Xiang F, Yu J, Li Y, Xia B, Zhang Z, Li C, Lin L. Research progress on pharmacological effects against liver and eye diseases of flavonoids present in Chrysanthum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim. and Sophora japonica L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119094. [PMID: 39532220 DOI: 10.1016/j.jep.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim., and Sophora japonica L. have the effects of "Clearing the liver" and "Improving vision". Flavonoids are their main active ingredients, but there are few reports on their simultaneous liver and eye protective effects. AIM OF THE STUDY Overview of the role of flavonoids of the four medicinal flowers (FFMF) in the prevention and treatment of liver and eye diseases. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for FFMF. Using "hepatitis", "liver fibrosis", "liver cancer", "dry eye syndrome", "cataracts", "glaucoma", "age-related macular degeneration", and "diabetic retinopathy" as the keywords, we summarized the main pathological mechanisms of these diseases and the role of FFMF in their prevention and treatment. RESULTS We found that the four medicinal flowers contained a total of 125 flavonoids. They can maintain liver and eye homeostasis by regulating pathological mechanisms such as oxidative stress, inflammation, endoplasmic reticulum stress, mitochondrial dysfunction, glucose and lipid metabolism disorders, and programmed cell death, exerting the effect of "clearing the liver and improving vision". CONCLUSION FFMF have a series of beneficial properties such as antioxidant, anti-inflammatory, antiviral, and antifibrotic activity, and the regulation of angiogenesis, glycolipid metabolism and programmed cell death, which may explain the efficacy of the four traditional Chinese medicines for "Clearing the liver" and "Improving vision".
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Feng Xiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jiahui Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
4
|
Yu L, Zhang Q, Zhou L, Wei Y, Li M, Wu X, Xin M. Ocular topical application of alpha-glucosyl hesperidin as an active pharmaceutical excipient: in vitro and in vivo experimental evaluation. Drug Deliv Transl Res 2024; 14:373-385. [PMID: 37531034 DOI: 10.1007/s13346-023-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Alpha-glucosyl hesperidin (GH) is an aqueous soluble, amphipathic hesperidin derivative with several pharmacological effects, and it is postulated in this manuscript that GH could potentially be utilized as an active pharmaceutical excipient in eyedrops. The ocular safety of GH was evaluated according to in vitro cytotoxicity and in vivo ocular tolerance. The in vivo corneal permeation of coumarin-6 (Cou-6) with or without GH was characterized, and the in vivo inducing corneal wound healing using bisdemethoxycurcumin (BDMC) with or without GH was also evaluated to determine whether GH is an active pharmaceutical excipient in eyedrops. The results demonstrated that as high as 30 mg/ml of GH exhibits high-level in vitro and in vivo safety profiles according to four in vitro and in vivo evaluations. GH improved the corneal permeation of Cou-6 in mice, as well as demonstrated in vitro antioxidant activity. Concerning in vivo activity, a BDMC-GH suspension was shown to be synergistic in promoting corneal wound healing in mice, as well as restoring corneal sensitivity, promoting corneal epithelial wound healing, and restoring the corneal tissue structure without inflammatory cell infiltration. Overall, GH could be a novel and promising active excipient in eyedrops.
Collapse
Affiliation(s)
- Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Qiliang Zhang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Liping Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd, Zaozhuang, Shandong, China
| | - Mengshuang Li
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Meng Xin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| |
Collapse
|
5
|
Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022; 14:nu14030534. [PMID: 35276895 PMCID: PMC8840399 DOI: 10.3390/nu14030534] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness. It is generally caused by increased intraocular pressure, which results in damage of the optic nerve and retinal ganglion cells, ultimately leading to visual field dysfunction. However, even with the use of intraocular pressure-lowering eye drops, the disease still progresses in some patients. In addition to mechanical and vascular dysfunctions of the eye, oxidative stress, neuroinflammation and excitotoxicity have also been implicated in the pathogenesis of glaucoma. Hence, the use of natural products with antioxidant and anti-inflammatory properties may represent an alternative approach for glaucoma treatment. The present review highlights recent preclinical and clinical studies on various natural products shown to possess neuroprotective properties for retinal ganglion cells, which thereby may be effective in the treatment of glaucoma. Intraocular pressure can be reduced by baicalein, forskolin, marijuana, ginsenoside, resveratrol and hesperidin. Alternatively, Ginkgo biloba, Lycium barbarum, Diospyros kaki, Tripterygium wilfordii, saffron, curcumin, caffeine, anthocyanin, coenzyme Q10 and vitamins B3 and D have shown neuroprotective effects on retinal ganglion cells via various mechanisms, especially antioxidant, anti-inflammatory and anti-apoptosis mechanisms. Extensive studies are still required in the future to ensure natural products' efficacy and safety to serve as an alternative therapy for glaucoma.
Collapse
|
6
|
Liu P, Wang F, Song Y, Wang M, Zhang X. Current situation and progress of drugs for reducing intraocular pressure. Ther Adv Chronic Dis 2022; 13:20406223221140392. [PMID: 36479139 PMCID: PMC9720821 DOI: 10.1177/20406223221140392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, the most common cause of irreversible blindness worldwide, usually causes characteristic optic nerve damage. Pathological intraocular pressure (IOP) elevation is a major risk factor. Drug reduction of IOP is the preferred treatment for clinicians because it can delay the progression of disease. However, the traditional IOP-lowering drugs currently used by patients may be poorly tolerated. Therefore, in recent years, some new drugs have been put into clinical application or in clinical phase I–III studies. They have a better IOP-lowering effect and fewer adverse reactions. Because glaucoma is a chronic disease, drugs need to be administered continuously for a long time. For patients, good compliance and high drug bioavailability have a positive effect on the prognosis of the disease. Therefore, clinicians and scientists have developed drug delivery systems to solve this complex problem. In addition, natural compounds and dietary supplements have a good effect of reducing IOP, and they can also protect the optic nerve through antioxidant action. We summarize the current traditional drugs, new drugs, sustained-release drug delivery systems, and complementary drugs and outline the mechanism of action and clinical effects of these drugs on glaucoma and their recent advances.
Collapse
Affiliation(s)
- Peiyu Liu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Feifei Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuning Song
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Menghui Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang University School of Ophthalmology & Optometry, Jiangxi Research Institute of Ophthalmology & Visual Science, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang 330006, China
| |
Collapse
|