1
|
Dudek A, Pietrzak M, Benkowska-Biernacka D, Pruchnik H, Boratyński F, El-Sayed ESR. Nanoliposomal Encapsulation of Red, Yellow, and Orange Natural Pigments from Monascus ruber: Characterization, Stability, and Biological Activities. Curr Microbiol 2025; 82:259. [PMID: 40272526 DOI: 10.1007/s00284-025-04238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Monascus pigments, a type of natural edible colorant, are extensively utilized in the food and health supplements industry. However, these pigments tend to be unstable during processing and storage. Thus, this study aims to prepare nanoliposomes of the Monascus three pigments and evaluate their properties and bioactivities. Three types of pigments (red, orange, and yellow) produced by Monascus ruber strain SRZ112 were extracted and purified then encapsulated into nanoliposomes. The prepared nanoliposomes were characterized by DLS, FT-IR, and TEM analyses. The obtained results showed that the three respective nanoliposomes have different polydispersity indexes (0.243, 0.187, and 0.202), zeta potentials (-21.79, -19.26, and-21.61 mV), and a range of particle sizes (85.31, 90.67, and 86.66 nm) with spherical unilamellar vesicles dependent on the prepared liposome type. The prepared nanoliposomes' pH, thermal, and storage stabilities were studied and compared to the free pigments. Moreover, the prepared nanoliposomes' antimicrobial, anti-inflammatory, antioxidant, and cytotoxic bioactivities were compared to the free pigments and evaluated. The prepared nanoliposomes in this study showed enhanced functionalities and bioactivities more than the free pigments. This is the first report on the nanoencapsulation of Monascus red, yellow, and orange pigments and the evaluation of their bioactivities. The achieved results in this study indicate the possibility of their exploitation in the cosmetic, pharmaceutical, and functional food industries.
Collapse
Affiliation(s)
- Anita Dudek
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Magdalena Pietrzak
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Dominika Benkowska-Biernacka
- Faculty of Chemistry, Institute of Advanced Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Jia J, Zhao S, Zhao J, Gao Y. Engineered nanoparticles for the treatment of Alzheimer's disease. Front Pharmacol 2025; 16:1510798. [PMID: 40248097 PMCID: PMC12003369 DOI: 10.3389/fphar.2025.1510798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases characterized by neurodegeneration and is becoming a major public health problem worldwide. AD is manifested mainly by progressive impairments in cognition, emotion, language and memory in the elderly population. Many treatment strategies have been explored for decades; however, there is still no effective way to address the root cause of AD pathogenesis, only to target symptoms to improve patient cognitive outcomes. Intracerebral administration is difficult because of the challenges posed by the blood‒brain barrier (BBB). NPs are materials with sizes between 1 and 100 nm that can improve biocompatibility, extend the half-life, transport macromolecules, be delivered across the BBB to the central nervous system, and exhibit good targeting capabilities. NPs can provide new ideas for the treatment of AD in terms of their antiaging, antineuroinflammatory, antioxidative, and nerve repair-promoting effects. In this manuscript, we first describe the relationship between AD and the BBB. Second, we introduce the application of nanoparticles for AD treatment. Finally, we summarize the challenges faced by nanoparticles in the treatment of AD.
Collapse
Affiliation(s)
- Jia Jia
- Department of Neurological Function Examination, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinghan Zhao
- Fifth Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yun Gao
- Second Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Sun D, Chen R, Lei L, Zhang F. Green synthesis of silver nanoparticles from the endophytic fungus Panax notoginseng and their antioxidant and antimicrobial activities and effects on cherry tomato preservation. Int J Food Microbiol 2025; 431:111083. [PMID: 39881453 DOI: 10.1016/j.ijfoodmicro.2025.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.92 and 31.34 nm, indicating strong antioxidant activity. In vitro assessments demonstrated that AgNPs exhibited significant antifungal activity against Phytophthora infestans, Botrytis cinerea, and Helminthosporium maydis. AgNPs produced inhibition zones measuring 17.5 mm, 15.2 mm, and 13.4 mm against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, respectively. When applied to cherry tomatoes, AgNP treatment effectively inhibited the growth of Botrytis cinerea, minimized weight loss, preserved fruit firmness and soluble solids content, slowed the reduction in titratable acidity, and prolonged storage life. Additionally, AgNPs suppressed the increase in malondialdehyde content and maintained increased superoxide dismutase activity. These findings highlight the potential of green biosynthetic silver nanoparticles as biological control agents, providing promising resources for developing innovative treatments against postharvest fungal infections in crops.
Collapse
Affiliation(s)
- Diangang Sun
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ruige Chen
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Liancheng Lei
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China; State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fuxian Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
4
|
Fahmy NF, Abdel-Kareem MM, Ahmed HA, Helmy MZ, Mahmoud EAR. Evaluation of the antibacterial and antibiofilm effect of mycosynthesized silver and selenium nanoparticles and their synergistic effect with antibiotics on nosocomial bacteria. Microb Cell Fact 2025; 24:6. [PMID: 39755661 DOI: 10.1186/s12934-024-02604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy. Recent studies showcase the effectiveness of various fungi species in nanoparticle synthesis. Mycosynthesized silver nanoparticles (AgNPs) and selenium nanoparticles (SeNPs) using Aspergillus carneus MAK 259 has been investigated and demonstrate antibacterial, antibiofilm and synergistic activities against (MRSA) and (MDR P. aeruginosa). RESULTS In the current research, silver nanoparticles (AgNPs) and selenium nanoparticles (SeNPs) were produced extracellularly using A. carneus MAK 259 culture supernatants. Colour change, an initial evaluation of the production of AgNPs and SeNPs. Then, UV absorption peaks at 410 nm and 260 nm confirmed the production of AgNPs and SeNPs, respectively. AgNPs and SeNPs were dispersed consistently between 5‒26 nm and 20-77 nm in size, respectively using TEM. FT-IR analysis was used for assessing proteins bound to the produced nanoparticles. The crystallinity and stability of AgNPs and SeNPs was confirmed using X-ray diffraction analysis and zeta potential measurements, respectively. Antibacterial, antibiofilm and synergistic effects of both (NPs) with antibiotics against MRSA and MDR P. aeruginosa were tested by Agar well diffusion, tissue culture plate and disc diffusion method respectively. Both (NPs) inhibited the growth of P. aeruginosa more than S. aureus. But, SeNPs was stronger. AgNPs had stronger antibiofilm effect especially on biofilms producing S. aureus. as regard synergestic effects, Both (NPs) had higher synergestic effects in combination with cell wall inhibiting antibiotics against P. aeuroginosa While, on S. aureus with antibiotics that inhibit protein synthesis and affect metabolic pathways. CONCLUSIONS Our study demonstrated that the mycosynthesized SeNPs had remarkable antibacterial effect while, mycosynthesized AgNPs exhibited a considerable antibiofilm effect. Both NPs exhibited higher synergistic effect with antibiotics with different modes of action. This approach could potentially enhance the efficacy of existing antibiotics, providing a new weapon against drug-resistant bacteria where the described silver and selenium nanoparticles play a pivotal role in revolutionizing healthcare practices, offering innovative solutions to combat antibiotic resistance, and contributing to the development of advanced medical technologies.
Collapse
Affiliation(s)
- Nahed Fathallah Fahmy
- Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Heba A Ahmed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mena Zarif Helmy
- General Laparoscopic and Oncology Surgical Department, Sohag University Hospital, Sohag, Egypt
| | | |
Collapse
|
5
|
Ding M, Osayande IS, Tsuda K. Selenium nanoboosting of plant-beneficial microbiome. Cell Host Microbe 2024; 32:2045-2047. [PMID: 39667345 DOI: 10.1016/j.chom.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
In the dynamic theater of plant-microbe interactions, a new conductor has emerged: selenium nanoparticles. As unveiled by Sun et al. in this issue of Cell Host & Microbe, these microbially synthesized nanoparticles recruit plant growth-promoting microbes, orchestrating a synergy between plants and the rhizosphere microbiome.
Collapse
Affiliation(s)
- Miaomiao Ding
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Ivie Sonia Osayande
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
6
|
El-Sayed ESR, El-Sayyad GS, Abdel-Fatah SS, El-Batal AI, Boratyński F. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Microb Cell Fact 2024; 23:259. [PMID: 39343880 PMCID: PMC11439306 DOI: 10.1186/s12934-024-02533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antimicrobial resistance has emerged as a major global health threat, necessitating the urgent development of new antimicrobials through innovative methods to combat the rising prevalence of resistant microbes. With this view, we developed three novel nanoconjugates using microbial natural pigment for effective application against certain pathogenic microbes. RESULTS A natural red pigment (RP) extracted from the endophyte Monascus ruber and gamma rays were applied to synthesize RP-ZnO, RP-CuO, and RP-MgO nanoconjugates. The synthesized nanoconjugates were characterized by different techniques to study their properties. The antimicrobial potential of these nanoconjugates was evaluated. Moreover, the antibiofilm, protein leakage, growth curve, and UV light irradiation effect of the synthesized nanoconjugates were also studied. Our results confirmed the nano-size, shape, and stability of the prepared conjugates. RP-ZnO, RP-CuO, and RP-MgO nanoconjugates showed broad antimicrobial potential against the tested bacterial and fungal pathogens. Furthermore, the RP-ZnO nanoconjugate possessed the highest activity, followed by the RP-CuO against the tested microbes. The highest % inhibition of biofilm formation by the RP-ZnO nanoconjugate. Membrane leakage of E. coli and S. aureus by RP-ZnO nanoconjugate was more effective than RP-MgO and RP-CuO nanoconjugates. Finally, UV light irradiation intensified the antibiotic action of the three nanoconjugates and RP-ZnO potential was greater than that of the RP-MgO, and RP-CuO nanoconjugates. CONCLUSION These findings pave the way for exploiting the synthesized nanoconjugates as potential materials in biomedical applications, promoting natural, green, and eco-friendly approaches.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Sobhy S Abdel-Fatah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|
7
|
Zhang H, Zhang W, Li M, Wang B, Zhang Z. A case of Aspergillus quadrilineatus pulmonary infection in China. Heliyon 2024; 10:e33000. [PMID: 38988516 PMCID: PMC11234046 DOI: 10.1016/j.heliyon.2024.e33000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
A 91-year-old Chinese male was hospitalized on June 28, 2021, due to a sudden fever. The patient had a long history of smoking, a 10-year history of type 2 diabetes, a family history of hypertension, and a history of coronary heart disease and lower extremity arterial occlusive disease. He presented with cough, sputum, and dry and wet rales in both lungs. A computed tomography scan revealed multiple infectious lesions in both lungs and a small pleural effusion. His procalcitonin level was 1.75 ng/mL. Microscopic examination of the sputum revealed abundant fungal spores and hyphae. Sputum culture results revealed Aspergillus quadrilineatus, which was confirmed by matrix-assisted laser desorption/ionization time-of-flight and internal transcribed spacer gene sequencing. Fungal drug sensitivity testing revealed that azoles (excluding fluconazole) and echinocandins exhibited high activity against Aspergillus quadrilineatus. The patient's condition improved following intravenous voriconazole treatment for 2 weeks, after which he was discharged. Subsequently, the patient was hospitalized six times for pulmonary infections, with the most recent hospitalization being on March 8, 2024. The symptoms improved, and the patient was discharged on March 15, 2024.
Collapse
Affiliation(s)
- Hongxia Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Wei Zhang
- Microbiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Maochen Li
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Bu Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhihua Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
8
|
El-Nagar D, Salem SH, El-Zamik FI, El-Basit HMIA, Galal YGM, Soliman SM, Aziz HAA, Rizk MA, El-Sayed ESR. Bioprospecting endophytic fungi for bioactive metabolites with seed germination promoting potentials. BMC Microbiol 2024; 24:200. [PMID: 38851702 PMCID: PMC11162052 DOI: 10.1186/s12866-024-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.
Collapse
Affiliation(s)
- Dina El-Nagar
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S H Salem
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fatma I El-Zamik
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Y G M Galal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S M Soliman
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - H A Abdel Aziz
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Rizk
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
9
|
Hatab MH, Badran AMM, Elaroussi MA, Rashad E, Taleb AMA, Elokil AA. Effect of Zinc Oxide Nanoparticles as Feed Additive on Blood Indices, Physiological, Immunological Responses, and Histological Changes in Broiler Chicks. Biol Trace Elem Res 2024; 202:2279-2293. [PMID: 37667095 PMCID: PMC10955013 DOI: 10.1007/s12011-023-03820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
A feeding trial of 5-week duration was performed to assess the response of broiler chicks to dietary supplementation with different doses of myco-fabricated zinc oxide nanoparticles (ZONPs) on blood indices, physiological, immunological response, antioxidant status, intestinal microbial count, and histological changes in immune organs. A total of 162 3-day-old Ross 308 broiler chicks were weighed individually and distributed equally into 3 dietary treatments with 6 replicate of 9 chicks in each in a completely randomized design. Chicks were fed ad libitum a basal ration prepared as starter, grower, and finisher supplemented with 0 (T1, control), 40 (T2), and 60 (T3) mg zinc oxide nanoparticles (ZONPs)/kg feed. Results showed that supplementing with ZONPs at both studied levels increased the relative weights of the spleen, bursa, thymus, and liver and decreased the relative weight of the kidney, gizzard, and intestine. A significant increase in the concentrations of hemoglobin (Hb), hematocrit (PCV%), red and white blood cell counts, total protein (TP), globulin (GLOB), aspartate transferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) and a significant decrease in malonaldehyde (MDA), uric acid, and creatinine concentration were observed. Furthermore, all immunological organs showed histological alteration and increased both types of immunity in ZONPs groups with more pronounced effects in the T2 group.
Collapse
Affiliation(s)
- Mahmoud H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mahmoud A Elaroussi
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel M Abu Taleb
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Abdelmotaleb A Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| |
Collapse
|
10
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
11
|
Abd Elmonem HA, Morsi RM, Mansour DS, El-Sayed ESR. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer's disease via acetylcholinesterase inhibition and oxidative stress reduction. Biometals 2023; 36:1391-1404. [PMID: 37556014 PMCID: PMC10684416 DOI: 10.1007/s10534-023-00525-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is one of the primary health problems linked to the decrease of acetylcholine in cholinergic neurons and elevation in oxidative stress. Myco-fabrication of ZnO-NPs revealed excellent biological activities, including anti-inflammatory and acetylcholinesterase inhibitory potentials. This study aims to determine if two distinct doses of myco-fabricated ZnO-NPs have a positive impact on behavioral impairment and several biochemical markers associated with inflammation and oxidative stress in mice that have been treated by aluminum chloride (AlCl3) to induce AD. Sixty male mice were haphazardly separated into equally six groups. Group 1 was injected i.p. with 0.5 ml of deionized water daily during the experiment. Mice in group 2 received AlCl3 (50 mg/kg/day i.p.). Groups 3 and 4 were treated i.p. with 5 and 10 mg/kg/day of ZnO-NPs only, respectively. Groups 5 and 6 were given i.p. 5 and 10 mg/kg/day ZnO-NPs, respectively, add to 50 mg/kg/day AlCl3. Results showed that the AlCl3 caused an increase in the escape latency time and a reduction in the time spent in the target quadrant, indicating a decreased improvement in learning and memory. Moreover, acetylcholinesterase enzyme (AChE) activity and malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) levels were significantly increased, and the content of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of serotonin and dopamine, were decreased in brain tissues only in AlCl3 treated mice. However, treatment of mice with myco-fabrication of ZnO-NPs at doses of 5 or 10 mg/kg improves learning and memory function through ameliorate all the previous parameters in the AD mice group. The low dose of 5 mg/kg is more effective than a high dose of 10 mg/kg. In accordance with these findings, myco-fabricated ZnO-NPs could enhance memory and exhibit a protective influence against memory loss caused by AlCl3.
Collapse
Affiliation(s)
- Hanan A Abd Elmonem
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Reham M Morsi
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa S Mansour
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
12
|
Abdelsalam A, El-Sayed H, Hamama HM, Morad MY, Aloufi AS, Abd El-Hameed RM. Biogenic Selenium Nanoparticles: Anticancer, Antimicrobial, Insecticidal Properties and Their Impact on Soybean ( Glycine max L.) Seed Germination and Seedling Growth. BIOLOGY 2023; 12:1361. [PMID: 37997960 PMCID: PMC10669218 DOI: 10.3390/biology12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Selenium nanoparticles (SeNPs) have demonstrated significant potential in a variety of disciplines, making them an extremely desirable subject of research. This study investigated the anticancer and antibacterial properties of my-co-fabricated selenium SeNPs, as well as their effects on soybean (Glycine max L.) seeds, seedling growth, cotton leafworm (Spodoptera littoralis) combat, and plant pathogenic fungi inhibition. SeNPs showed anticancer activity with an IC50 value of 1.95 µg/mL against MCF-7 breast adenocarcinoma cells. The myco-synthesized SeNPs exhibited an antibacterial effect against Proteus mirabilis and Klebsiella pneumoniae at 20 mg/mL. The use of 1 µM SeNPs improved soybean seed germination (93%), germination energy (76.5%), germination rate (19.0), and mean germination time (4.3 days). At 0.5 and 1.0 µM SeNPs, the growth parameters of seedlings improved. SeNPs increased the 4th instar larval mortality of cotton leafworm compared to control, with a median lethal concentration of 23.08 mg/mL. They inhibited the growth of Fusarium oxysporum, Rhizoctonia solani, and Fusarium solani. These findings demonstrate that biogenic SeNPs represent a promising approach to achieving sustainable progress in the fields of agriculture, cancer therapy, and infection control.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| | - Heba M. Hamama
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab M. Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| |
Collapse
|
13
|
El-Sayed H, Morad MY, Sonbol H, Hammam OA, Abd El-Hameed RM, Ellethy RA, Ibrahim AM, Hamada MA. Myco-Synthesized Selenium Nanoparticles as Wound Healing and Antibacterial Agent: An In Vitro and In Vivo Investigation. Microorganisms 2023; 11:2341. [PMID: 37764185 PMCID: PMC10536823 DOI: 10.3390/microorganisms11092341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial-associated wound infections are an obstacle for individuals and the medical industry. Developing versatile, antibiotic-free therapies helps heal wounds more quickly and efficiently. In the current study, fungal metabolites were employed as a reducing agent in fabricating selenium nanoparticles (SeNPs) for improved antibacterial and wound healing properties. Utilizing UV-visible spectroscopy, dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), and electron microscopic examination, the properties of the synthesized nanoparticles were extensively evaluated. Myco-synthesized SeNPs demonstrated strong antibacterial activity against Staphylococcus aureus ATCC 6538 with a minimum inhibitory concentration of 0.3125 mg/mL, reducing cell number and shape distortion in scanning electron microscope (SEM) images. SeNPs' topical administration significantly reduced wound area and healing time, exhibiting the least bacterial load after six days compared to controls. After six and 11 days of treatment, SeNPs could decrease proinflammatory cytokines IL-6 and TNF-α production. The histopathological investigation showed a healed ulcer with moderate infiltration of inflammatory cells after exposing mice's skin to SeNPs for six and 11 days. The docking interaction indicated that SeNPs were highly efficient against the IL-6 and TNF-α binding receptors. These findings imply that myco-fabricated SeNPs might be used as topically applied antimicrobial agents for treating skin infections and wounds.
Collapse
Affiliation(s)
- Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Olfat A. Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| | - Rehab M. Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| | - Rania A. Ellethy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| | - Marwa A. Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| |
Collapse
|
14
|
El-Behery RR, El-Sayed ESR, El-Sayyad GS. Gamma rays-assisted bacterial synthesis of bimetallic silver-selenium nanoparticles: powerful antimicrobial, antibiofilm, antioxidant, and photocatalytic activities. BMC Microbiol 2023; 23:224. [PMID: 37587432 PMCID: PMC10428608 DOI: 10.1186/s12866-023-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.
Collapse
Affiliation(s)
- Reham R El-Behery
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
15
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
16
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
17
|
Nassar ARA, Eid AM, Atta HM, El Naghy WS, Fouda A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep 2023; 13:9054. [PMID: 37270596 DOI: 10.1038/s41598-023-35360-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Herein, four endophytic fungal strains living in healthy roots of garlic were used to produce selenium nanoparticles (Se-NPs) via green synthesis. Penicillium verhagenii was found to be the most efficient Se-NPs producer with a ruby red color that showed maximum surface plasmon resonance at 270 nm. The as-formed Se-NPs were crystalline, spherical, and well-arranged without aggregation, and ranged from 25 to 75 nm in size with a zeta potential value of -32 mV, indicating high stability. Concentration-dependent biomedical activities of the P. verhagenii-based Se-NPs were observed, including promising antimicrobial activity against different pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis) with minimum inhibitory concentration (MIC) of 12.5-100 µg mL-1. The biosynthesized Se-NPs showed high antioxidant activity with DPPH-scavenging percentages of 86.8 ± 0.6% at a concentration of 1000 µg mL-1 and decreased to 19.3 ± 4.5% at 1.95 µg mL-1. Interestingly, the Se-NPs also showed anticancer activity against PC3 and MCF7 cell lines with IC50 of 225.7 ± 3.6 and 283.8 ± 7.5 µg mL-1, respectively while it is remaining biocompatible with normal WI38 and Vero cell lines. Additionally, the green synthesized Se-NPs were effective against instar larvae of a medical insect, Aedes albopictus with maximum mortality of 85.1 ± 3.1, 67.2 ± 1.2, 62.10 ± 1.4, and 51.0 ± 1.0% at a concentration of 50 µg mL-1 for I, II, III, and IV-instar larva, respectively. These data highlight the efficacy of endophytic fungal strains for cost-effective and eco-friendly Se-NPs synthesis with different applications.
Collapse
Affiliation(s)
| | - Ahmed M Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
18
|
El-Sayed ESR, Mohamed SS, Mousa SA, El-Seoud MAA, Elmehlawy AA, Abdou DAM. Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express 2023; 13:41. [PMID: 37119397 PMCID: PMC10148937 DOI: 10.1186/s13568-023-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present era, nanomaterials are emerging as a powerful tool for management of plant disease and improving crop production to meet the growing global need for food. Thus, this paper was conducted to explore the effectiveness of five different types of nanoparticles (NPs) viz., Co3O4NPs, CuONPs, Fe3O4NPs, NiONPs, and ZnONPs as treatments for Fusarium wilt as well as their role in promoting growth of the common bean plant. The five types of NPs were applied as a treatment for wilt in two ways, therapeutic and protective plans under greenhouse conditions. In vivo experiments showed that all types of NPs significantly increased disease control and diminished the symptoms of Fusarium wilt for both incidence and severity. The recorded values for disease control using the respective NPs during the protective plan were 82.77, 60.17, 49.67, 38.23, and 70.59%. Meanwhile these values were 92.84, 64.67, 51.33, 45.61, 73.84% during the therapeutic plan. Moreover, CuONPs during the protective plan were the best among the five types of NPs employed in terms of wilt disease management. Regarding the use of these NPs as growth promoters, the obtained results confirmed the effectiveness of the five types of NPs in enhancing vegetative growth of the plant under greenhouse conditions, in comparison with control. Among the five NPs, CuONPs improved the plant vegetative growth and particularly increased the content of the photosynthetic pigments; chlorophyll-a (2.96 mg/g), -b (1.93 mg/g), and total carotenoids (1.16 mg/g). These findings suggest the successful and potential exploitation of nanomaterials in agriculture deployed as nano-based products including nano-fungicides and nano-fertilizers. In terms of sustainability, this promising and exceptional multifunctional role of these nanomaterials will surely exert positive impacts on both the environment and sustainable agriculture.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Samar S Mohamed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shaimaa A Mousa
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed A Abo El-Seoud
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Adel A Elmehlawy
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia A M Abdou
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Devi R, Abdulhaq A, Verma R, Sharma K, Kumar D, Kumar A, Tapwal A, Yadav R, Mohan S. Improvement in the Phytochemical Content and Biological Properties of Stevia rebaudiana (Bertoni) Bertoni Plant Using Endophytic Fungi Fusarium fujikuroi. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051151. [PMID: 36904011 PMCID: PMC10005530 DOI: 10.3390/plants12051151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/14/2023]
Abstract
This study aimed to increase the therapeutic potential of medicinal plants through inoculation with endophytic fungi. As endophytes influence medicinal plants' biological properties, twenty fungal strains were isolated from the medicinal plant Ocimum tenuiflorum. Among all fungal isolates, the R2 strain showed the highest antagonistic activity towards plant pathogenic fungi Rosellinia necatrix and Fusarium oxysporum. The partial ITS region of the R2 strain was deposited in the GenBank nucleotide sequence databases under accession number ON652311 as Fusarium fujikuroi isolate R2 OS. To ascertain the impact of an endophytic fungus on the biological functions of medicinal plants, Stevia rebaudiana seeds were inoculated with Fusarium fujikuroi (ON652311). In the DPPH assay, the IC50 value of the inoculated Stevia plant extracts (methanol, chloroform, and positive control) was 72.082 µg/mL, 85.78 µg/mL, and 18.86 µg/mL, respectively. In the FRAP assay, the IC50 value of the inoculated Stevia extracts (methanol, chloroform extract, and positive control) was 97.064 µM Fe2+ equivalents, 117.662 µM Fe2+ equivalents, and 53.384 µM Fe2+ equivalents, respectively. In the extracts of the plant inoculated with endophytic fungus, rutin and syringic acid (polyphenols) concentrations were 20.8793 mg/L and 5.4389 mg/L, respectively, which were higher than in the control plant extracts. This approach can be further utilized for other medicinal plants to increase their phytochemical content and hence medicinal potential in a sustainable way.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Ahmed Abdulhaq
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Correspondence: (R.V.); (S.M.)
| | - Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan 173229, India
| | - Ajay Kumar
- Himalayan Forest Research Institute, Conifer Campus, Shimla 171013, India
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Conifer Campus, Shimla 171013, India
| | - Rahul Yadav
- Shoolini Life Sciences, Private Limited, Solan 173229, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600077, India
- Correspondence: (R.V.); (S.M.)
| |
Collapse
|
20
|
Gamma irradiation mediated production improvement of some myco-fabricated nanoparticles and exploring their wound healing, anti-inflammatory and acetylcholinesterase inhibitory potentials. Sci Rep 2023; 13:1629. [PMID: 36717680 PMCID: PMC9887004 DOI: 10.1038/s41598-023-28670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In the current scenario, scaling up the microbial production of nanoparticles with diverse biological applications is an emerging prospect for NPs' sustainable industry. Thus, this paper was conducted to develop a suitable applicative process for the myco-fabrication of cobalt-ferrite (CoFeNPs), selenium (SeNPs), and zinc oxide (ZnONPs) nanoparticles. A strain improvement program using gamma irradiation mutagenesis was applied to improve the NPs-producing ability of the fungal strains. The achieved yields of CoFeNPs, SeNPs, and ZnONPs were intensified by a 14.47, 7.85, and 22.25-fold increase from the initial yield following gamma irradiation and isolation of stable mutant strains. The myco-fabricated CoFeNPs, SeNPs, and ZnONPs were then exploited to study their wound healing, and anti-inflammatory. In addition, the acetylcholinesterase inhibition activities of the myco-fabricated NPs were evaluated and analyzed by molecular docking. The obtained results confirmed the promising wound healing, anti-inflammatory, and acetylcholinesterase inhibition potentials of the three types of NPs. Additionally, data from analyzing the interaction of NPs with acetylcholinesterase enzyme by molecular docking were in conformation with the experimental data.
Collapse
|
21
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
22
|
Hatab MH, Rashad E, Saleh HM, El-Sayed ESR, Taleb AMA. Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Sci Rep 2022; 12:18791. [PMID: 36335156 PMCID: PMC9637221 DOI: 10.1038/s41598-022-22836-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A five weeks biological experiment was planned to investigate the impacts of dietary supplementation with zinc oxide nanoparticles (ZnONPs) synthesized by the endophytic fungus Alternaria tenuissima on productive performance, carcass traits, organ relative weights, serum biochemical parameters, histological alteration in some internal organs and concentration of this element in the serum, liver, thigh and breast muscle in broiler chicks. A total of 108 3-day-old commercial broiler chicks (Cobb 500) were individually weighed and equally distributed in a completely randomized design arrangement according to the dose of ZnONPs supplementation into 3 dietary experimental groups. There were 6 replications having 6 birds per replicate (n = 36/ treatment) for each treatment. The three experiential dietary treatments received corn-soybean meal-based diets enhanced with 0 (control), 40 and 60 mg/kg diet of ZnONPs respectively with feed and water were provided ad libitum consumption through 5 weeks life span. Present results indicated that after 5 weeks of feeding trial and as compared to control, the ZnONPs supplementation groups recorded higher body weight, improved feed consumption, feed conversion ratio and performance index. Serum biochemical analyses revealed that serum cholesterol, triglyceride, low density lipoprotein and uric acid decreased significantly, while high density lipoprotein and liver enzyme concentrations were increased significantly. Meanwhile, zinc accumulation in serum, liver and breast and thigh muscle were linearly increased with increasing zinc supplementation. It could be concluded that supplementation of ZnONPs to broiler diet at 40 or 60 mg/kg improved productive performance, birds' physiological status and the lower levels Zn (40 mg/kg diet) revealed promising results and can be used as an effective feed additive in broilers.
Collapse
Affiliation(s)
- M H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - E Rashad
- Cytology and Histology Department, Cairo University, Giza, Egypt
| | - Hisham M Saleh
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - A M Abu Taleb
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
23
|
Hazaa MA, Shebl MM, El-Sayed ESR, Mahmoud SR, Khattab AA, Amer MM. Bioprospecting endophytic fungi for antifeedants and larvicides and their enhancement by gamma irradiation. AMB Express 2022; 12:120. [PMID: 36114376 PMCID: PMC9481848 DOI: 10.1186/s13568-022-01461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The search and discovery of new natural products with antifeedant and larvicidal potentials to mitigate harmful insects are scientific pressing issues in the modern agriculture. In this paper, the antifeedant and larvicidal potentials of 69 fungal isolates were screened against the Egyptian cotton leafworm Spodoptera littoralis. A total of 17 isolates showed the insecticidal potentials with three promising isolates. These strains were Aspergillus sydowii, Lasiodiplodia theobromae, and Aspergillus flavus isolated from Ricinus communis (bark), Terminalia arjuna (Bark), and Psidium guajava (twigs), respectively. The effect of gamma irradiation on the antifeedant and larvicidal activities of the three strains was investigated. Exposure of the fungal spores to 1000 Gy of gamma rays significantly intensified both the antifeedant and larvicidal potentials. To identify compounds responsible for these activities, extracts of the three strains were fractionated by thin layer chromatography. The nature of the separated compounds namely, Penitrem A, 1, 3, 5, 8- tetramethyl- 4, 6-diethyl- 7- [2- (methoxycarbonyl)ethyl] porphyrin (from A. sydowii), Penitrem A, 2, 7, 12, 17-Tetramethyl-3, 5:8, 10:13, 15:18, 20-tetrakis (2,2-dimethylpropano) porphyrin (from A. flavus), N,N-Diethyl-3-nitrobenzamide, and Diisooctyl-phthalate (from L. theobromae) were studied by GC-MS analysis. These findings recommend endophytic fungi as promising sources of novel natural compounds to mitigate harmful insects. Three promising fungal endophytes with antifeedant and larvicidal activities were reported. The antifeedant and larvicidal activities were intensified following exposure of fungal spores to 1000 Gy gamma rays. Extracts of the three strains were separately fractionated by TLC then GC-MS was used to identify chemical constituents responsible for bioactivity.
Collapse
|
24
|
Anwar MM, Aly SSH, Nasr EH, El-Sayed ESR. Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. AMB Express 2022; 12:116. [PMID: 36070053 PMCID: PMC9452608 DOI: 10.1186/s13568-022-01459-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
In this paper, gamma-irradiation was successfully used to intensify the yield of Zinc oxide nanoparticles (ZnONPs) produced by the fungus Alternaria tenuissima as a sustainable and green process. The obtained data showed that 500 Gy of gamma-irradiation increased ZnONPs' yield to approximately four-fold. The synthesized ZnONPs were then exploited to develop active Carboxymethyl Cellulose films by casting method at two different concentration of ZnONPs 0.5% and 1.0%. The physicochemical, mechanical, antioxidant, and antimicrobial properties of the prepared films were evaluated. The incorporation of ZnONPs in the Carboxymethyl Cellulose films had significantly decreased solubility (from 78.31% to 66.04% and 59.72%), water vapor permeability (from 0.475 g m-2 to 0.093 g m-2 and 0.026 g m-2), and oxygen transfer rate (from 24.7 × 10-2 to 2.3 × 10-2 and 1.8 × 10-2) of the respective prepared films. Meanwhile, tensile strength (from 183.2 MPa to 203.34 MPa and 235.94 MPa), elongation (from 13.0% to 62.5% and 83.7%), and Yang's modulus (from 325.344 to 1410.0 and 1814.96 MPa) of these films were increased. Moreover, the antioxidant and antimicrobial activities against several human and plant pathogens the prepared of Carboxymethyl Cellulose-ZnONPs films were significantly increased. In conclusion, the prepared Carboxymethyl Cellulose-ZnONPs films showed enhanced activities in comparison with Carboxymethyl Cellulose film without NPs. With these advantages, the fabricated Carboxymethyl Cellulose-ZnONPs films in this study could be effectively utilized as protective edible coating films of food products.
Collapse
Affiliation(s)
- Mervat M Anwar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sanaa S H Aly
- Food Engineering and Packing Department, Agriculture Research Centre, Food Technology Research Institute, Giza, Egypt
| | - Essam H Nasr
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
25
|
El-Sayed ESR, Gach J, Olejniczak T, Boratyński F. A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 2022; 12:12611. [PMID: 35871189 PMCID: PMC9308793 DOI: 10.1038/s41598-022-16269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
A number of biopigment applications in various industrial sectors are gaining importance due to the growing consumer interest in their natural origin. Thus, this work was conducted to valorize endophytic fungi as an efficient production platform for natural pigments. A promising strain isolated from leaves of Origanum majorana was identified as Monascus ruber SRZ112 produced several types of pigments. The nature of the pigments, mainly rubropunctamine, monascin, ankaflavin, rubropunctatin, and monascorubrin in the fungal extract was studied by LC/ESI-MS/MS analyses. As a first step towards developing an efficient production of red pigments, the suitability of seven types of agro-industrial waste was evaluated. The highest yield of red pigments was obtained using potato peel moistened with mineral salt broth as a culture medium. To increase yield of red pigments, favourable culture conditions including incubation temperature, incubation period, pH of moistening agent, inoculum concentration, substrate weight and moisture level were evaluated. Additionally, yield of red pigments was intensified after the exposure of M. ruber SRZ112 spores to 1.00 KGy gamma rays. The final yield was improved by a 22.12-fold increase from 23.55 to 3351.87 AU g-1. The anticancer and antioxidant properties of the pigment's extract from the fungal culture were also studied. The obtained data indicated activity of the extract against human breast cancer cell lines with no significant cytotoxicity against normal cell lines. The extract also showed a free radical scavenging potential. This is the first report, to our knowledge, on the isolation of the endophytic M. ruber SRZ112 strain with the successful production of natural pigments under solid-state fermentation using potato peel as a substrate.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|