1
|
Yu Z, Wang D, Lin Z, Li H. Protocol to Mine Unknown Flanking DNA Using PER-PCR for Genome Walking. Bio Protoc 2025; 15:e5188. [PMID: 40028008 PMCID: PMC11865826 DOI: 10.21769/bioprotoc.5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 03/05/2025] Open
Abstract
Genome walking, a molecular technique for mining unknown flanking DNAs, has a wide range of uses in life sciences and related areas. Herein, a simple but reliable genome walking protocol named primer extension refractory PCR (PER-PCR) is detailed. This PER-PCR-based protocol uses a set of three walking primers (WPs): primary WP (PWP), secondary WP (SWP), and tertiary WP (TWP). The 15 nt middle region of PWP overlaps the 3' region of SWP/TWP. The 5' regions of the three WPs are completely different from each other. In the low annealing temperature cycle of secondary or tertiary PER-PCR, the short overlap mediates the annealing of the WP to the previous WP site, thus producing a series of single-stranded DNAs (ssDNA). However, the 5' mismatch between the two WPs prevents the template DNA from synthesizing the WP complement at its 3' end. In the next high annealing temperature cycles, the target ssDNA is exponentially amplified because it is defined by both the WP and sequence-specific primer, while non-target ssDNA cannot be amplified as it lacks a binding site for at least one of the primers. Finally, the target DNA becomes the main PER-PCR product. This protocol has been validated by walking two selected genes. Key features • The current protocol builds upon the technique developed by Li et al. [1], which is universal to any species. • The developed protocol relies on the partial overlap among a set of three WPs. • Two rounds of nested PER-PCRs can generally result in a positive walking result. Graphical overview.
Collapse
Affiliation(s)
- Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyu Lin
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Jia M, Ding D, Liu X, Li H. Protocol to Identify Unknown Flanking DNA Using Partially Overlapping Primer-based PCR for Genome Walking. Bio Protoc 2025; 15:e5172. [PMID: 39959294 PMCID: PMC11825308 DOI: 10.21769/bioprotoc.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025] Open
Abstract
Genome walking is a popular molecular technique for accessing unknown flanking DNAs, which has been widely used in biology-related fields. Herein, a simple but accurate genome-walking protocol named partially overlapping primer (POP)-based PCR (POP-PCR) is described. This protocol exploits a POP set of three POPs to mediate genome walking. The three POPs have a 10 nt 3' overlap and 15 nt heterologous 5' regions. Therefore, a POP can partially anneal to the previous POP site only at a relatively low temperature (approximately 50 °C). In primary POP-PCR, the low-temperature (25 °C) cycle allows the primary POP to partially anneal to site(s) of an unknown flank and many sites of the genome, synthesizing many single-stranded DNAs. In the subsequent high-temperature (65 °C) cycle, the target single-stranded DNA is converted into double-stranded DNA by the sequence-specific primer, attributed to the presence of this primer complement, while non-target single-stranded DNA cannot become double-stranded because it lacks a binding site for both primers. As a result, only the target DNA is amplified in the remaining 65 °C cycles. In secondary or tertiary POP-PCR, the 50 °C cycle directs the POP to the previous POP site and synthesizes many single-stranded DNAs. However, as in the primary PCR, only the target DNA can be amplified in the subsequent 65 °C cycles. This POP-PCR protocol has many potential applications, such as screening microbes, identifying transgenic sites, or mining new genetic resources. Key features • This POP-PCR protocol, built upon the technique developed by Li et al. [1], is universal to genome walking of any species. • The established protocol relies on the 10 nt 3' overlap among a set of three POPs. • The first two rounds of POP-PCRs can generally give a positive walking outcome.
Collapse
Affiliation(s)
- Mengya Jia
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dongqin Ding
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wu H, Pan H, Li H. Protocol to Retrieve Unknown Flanking DNA Using Fork PCR for Genome Walking. Bio Protoc 2025; 15:e5161. [PMID: 39872713 PMCID: PMC11769745 DOI: 10.21769/bioprotoc.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
PCR-based genome walking is one of the prevalent techniques implemented to acquire unknown flanking genomic DNAs. The worth of genome walking includes but is not limited to cloning full-length genes, mining new genes, and discovering regulatory regions of genes. Therefore, this technique has advanced molecular biology and related fields. However, the PCR amplification specificity of this technique needs to be further improved. Here, a practical protocol based on fork PCR is proposed for genome walking. This PCR uses a fork primer set of three arbitrary primers to execute walking amplification task, where the primary fork primer mediates walking by partially annealing to an unknown flank, and the fork-like structure formed between the three primers participates in inhibiting non-target amplification. In primary fork PCR, the low-annealing temperature (25 °C) cycle allows the primary fork primer to anneal to many sites of the genome, synthesizing a cluster of single-stranded DNAs; the subsequent 65 °C cycle processes the target single-strand into double-strand via the site-specific primer; then, the remaining 65 °C cycles selectively enrich this target DNA. However, any non-target single-stranded DNA formed in the 25 °C cycle cannot be further processed in the following 65 °C cycles because it lacks an exact binding site for any primer. Secondary, or even tertiary nested fork PCR further selectively enriches the target DNA. The practicability of fork PCR was validated by walking three genes in Levilactobacillus brevis CD0817 and one gene in Oryza sativa. The results indicated that the proposed protocol can serve as a supplement to the existing genome walking protocols. Key features • This protocol builds upon the method developed by Pan et al. [1], which is applicable to genome-walking for any species. • The developed protocol is a random priming PCR-based genome-walking scheme. • Two rounds of nested fork PCR amplifications suffice to release a positive walking result.
Collapse
Affiliation(s)
- Hongjing Wu
- Nanchang University College of Science and Technology, Nanchang, China
| | - Hao Pan
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Wang R, Gu Y, Chen H, Tian B, Li H. Uracil base PCR implemented for reliable DNA walking. Anal Biochem 2025; 696:115697. [PMID: 39442604 DOI: 10.1016/j.ab.2024.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
PCR-based DNA walking is of efficacy for capturing unknown flanking genomic sequences. Here, an uracil base PCR (UB-PCR) with satisfying specificity has been devised for DNA walking. Primary UB-PCR replaces thymine base with uracil base, resulting in a primary PCR product composed of U-DNAs. A single-primer (primary nested sequence-specific primer) single-cycle amplification, using the four normal bases (adenine, thymine, cytosine, and guanine) as substrate, is then performed on the primary PCR product. Clearly, only those U-DNAs, ended by the primary nested sequence-specific primer at least at one side, will produce the corresponding normal single strands. Next, the single-cycle product undergoes uracil-DNA glycosylase treatment to destroy the U-DNAs, while the normal single strands are unaffected. Afterward, secondary even tertiary PCR is performed to exclusively enrich the target product. The feasibility of UB-PCR has been checked by obtaining unknown sequences bordering the three selected genetic sites.
Collapse
Affiliation(s)
- Rongrong Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yinwei Gu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Hong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China; Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
5
|
Klötzer C, Schnabel F, Kubasch AS, Jentzsch M, Franke GN, Uhlig J, Faust H, Jauss RT, Oppermann H, Popp D, Metzeler KH, Lemke JR, Vučinić V, Platzbecker U. Thiamine-Responsive Megaloblastic Anemia Syndrome Mimicking Myelodysplastic Neoplasm. Acta Haematol 2024:1-5. [PMID: 39467528 DOI: 10.1159/000542286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Thiamine-responsive megaloblastic anemia syndrome (TRMA) is a rare autosomal recessive disease with a homozygous or compound-heterozygous mutation in the SLC19A2 gene characterized by megaloblastic anemia, diabetes mellitus (DM), and sensorineural hearing loss with onset in childhood. Folic acid and vitamin B12 in serum are normal with dysplastic erythropoiesis in the bone marrow often mimicking myelodysplastic neoplasms (MDS) as a potential differential diagnosis. Thiamine substitution leads to normalization of anemia, without effects on hearing loss or DM. CASE PRESENTATION We report about a 38-year-old male patient, presented with a 12-year history of anemia, insulin dependent DM, optic neuropathy, and a cataract since early childhood. The laboratory showed megaloblastic anemia. Other values were normal. The bone marrow smear showed dysplastic erythropoiesis with megaloblastic changes, and normal findings in cytogenetic and molecular genetic examinations. Next-generation sequencing-based diagnostics revealed a heterozygous missense variant in the SLC19A2 gene on the maternal allele and a 3.4 Mb inversion in the chromosomal region 1q24.2 with breaking points in FAM78B and SLC19A2 on the paternal allele. Treatment with oral thiamine 100 mg daily was initiated, and 12 weeks later hemoglobin levels and bone marrow morphology had normalized. CONCLUSION Late-onset TRMA should be considered in adult patients with indicative comorbidities and a typical phenotype, which may mimic features of MDS.
Collapse
Affiliation(s)
- Christina Klötzer
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Franziska Schnabel
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Anne-Sophie Kubasch
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Madlen Jentzsch
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Georg-Nikolaus Franke
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Jens Uhlig
- Hematological Praxis Naunhof, Naunhof, Germany
| | - Helene Faust
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Robin-Tobias Jauss
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Henry Oppermann
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Denny Popp
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Klaus H Metzeler
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Johannes R Lemke
- University Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
- University Leipzig Medical Center, Center for Rare Diseases, Leipzig, Germany
| | - Vladan Vučinić
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| | - Uwe Platzbecker
- University Leipzig Medical Center, Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, Leipzig, Germany
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
| |
Collapse
|
6
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Chen H, Wei C, Lin Z, Pei J, Pan H, Li H. Protocol to retrieve unknown flanking DNA sequences using semi-site-specific PCR-based genome walking. STAR Protoc 2024; 5:102864. [PMID: 38308839 PMCID: PMC10850853 DOI: 10.1016/j.xpro.2024.102864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Here, we describe a protocol based on semi-site-specific primer PCR (3SP-PCR) to access unknown flanking DNA sequences. We specify the guidelines for designing primers for 3SP-PCR. We also describe experimental procedures for the 3SP-PCR, along with PCR product purification and subsequent sequencing and analysis. For complete details on the use and execution of this protocol, please refer to Wei et al.1.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Cheng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Jinfen Pei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| | - Hao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P.R. China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China.
| |
Collapse
|
8
|
Li H, Lin Z, Guo X, Pan Z, Pan H, Wang D. Primer extension refractory PCR: an efficient and reliable genome walking method. Mol Genet Genomics 2024; 299:27. [PMID: 38466442 DOI: 10.1007/s00438-024-02126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3' parts of the secondary and tertiary primers. The 5' parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5' part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Boya Bio-Pharmaceutical Group Co., Ltd, High-Tech Industrial Development Zone, Fuzhou, 344100, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
9
|
Pan H, Guo X, Pan Z, Wang R, Tian B, Li H. Fork PCR: a universal and efficient genome-walking tool. Front Microbiol 2023; 14:1265580. [PMID: 37808312 PMCID: PMC10556450 DOI: 10.3389/fmicb.2023.1265580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
The reported genome-walking methods still suffer from some deficiencies, such as cumbersome experimental steps, short target amplicon, or deep background. Here, a simple and practical fork PCR was proposed for genome-walking. The fork PCR employs a fork primer set of three random oligomers to implement walking task. In primary fork PCR, the low-stringency amplification cycle mediates the random binding of primary fork primer to some places on genome, producing a batch of single-stranded DNAs. In the subsequent high-stringency amplification, the target single-strand is processed into double-strand by the site-specific primer, but a non-target single-stranded DNA cannot be processed by any primer. As a result, only the target DNA can be exponentially amplified in the remaining high-stringency cycles. Secondary/tertiary nested fork PCR(s) further magnifies the amplification difference between the both DNAs by selectively enriching target DNA. The applicability of fork PCR was validated by walking several gene loci. The fork PCR could be a perspective substitution for the existing genome-walking schemes.
Collapse
Affiliation(s)
- Hao Pan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Rongrong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Bingkun Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Li H, Pei J, Wei C, Lin Z, Pan H, Pan Z, Guo X, Yu Z. Sodium-Ion-Free Fermentative Production of GABA with Levilactobacillus brevis CD0817. Metabolites 2023; 13:metabo13050608. [PMID: 37233649 DOI: 10.3390/metabo13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermentation media used L-glutamic acid instead of monosodium L-glutamate as the substrate. We optimized the key factors influencing GABA formation, adopting Erlenmeyer flask fermentation. The optimized values of the key factors of glucose, yeast extract, Tween 80, manganese ion, and fermentation temperature were 10 g/L, 35 g/L, 1.5 g/L, 0.2 mM, and 30 °C, respectively. Based on the optimized data, a sodium-ion-free GABA fermentation process was developed using a 10-L fermenter. During the fermentation, L-glutamic acid powder was continuously dissolved to supply substrate and to provide the acidic environment essential for GABA synthesis. The current bioprocess accumulated GABA at up to 331 ± 8.3 g/L after 48 h. The productivity of GABA was 6.9 g/L/h and the molar conversion rate of the substrate was 98.1%. These findings demonstrate that the proposed method is promising in the fermentative preparation of GABA by lactic acid bacteria.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
11
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Protocol to access unknown flanking DNA sequences using Wristwatch-PCR for genome-walking. STAR Protoc 2023; 4:102037. [PMID: 36853735 PMCID: PMC9871321 DOI: 10.1016/j.xpro.2022.102037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Here we describe a protocol for wristwatch PCR, an approach based on wristwatch-like structure formed between walking primers to obtain unknown flanks. We specify the criteria for designing wristwatch primers and gene-specific primers. We detail how to set wristwatch primer permutations to obtain personalized walking outcomes and improve walking efficiency. We describe experimental procedures for isolating a DNA of interest using three rounds of nested wristwatch PCR as well as the subsequent steps for DNA purification, cloning, and sequencing. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).1.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, USA
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
12
|
Wei C, Lin Z, Pei J, Pan H, Li H. Semi-Site-Specific Primer PCR: A Simple but Reliable Genome-Walking Tool. Curr Issues Mol Biol 2023; 45:512-523. [PMID: 36661520 PMCID: PMC9857434 DOI: 10.3390/cimb45010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Genome-walking has been frequently applied to molecular biology and related areas. Herein, a simple but reliable genome-walking technique, termed semi-site-specific primer PCR (3SP-PCR), is presented. The key to 3SP-PCR is the use of a semi-site-specific primer in secondary PCR that partially overlaps its corresponding primary site-specific primer. A 3SP-PCR set comprises two rounds of nested amplification reactions. In each round of reaction, any primer is allowed to partially anneal to the DNA template once only in the single relaxed-stringency cycle, creating a pool of single-stranded DNAs. The target single-stranded DNA can be converted into a double-stranded molecule directed by the site-specific primer, and thus can be exponentially amplified by the subsequent high-stringency cycles. The non-target one cannot be converted into a double-strand due to the lack of a perfect binding site to any primer, and thus fails to be amplified. We validated the 3SP-PCR method by using it to probe the unknown DNA regions of rice hygromycin genes and Levilactobacillus brevis CD0817 glutamic acid decarboxylase genes.
Collapse
Affiliation(s)
- Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
13
|
Bridging PCR: An Efficient and Reliable Scheme Implemented for Genome-Walking. Curr Issues Mol Biol 2023; 45:501-511. [PMID: 36661519 PMCID: PMC9857710 DOI: 10.3390/cimb45010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The efficacy of the available genome-walking methods is restricted by low specificity, high background, or composite operations. We herein conceived bridging PCR, an efficient genome-walking approach. Three primers with random sequences, inner walker primer (IWP), bridging primer (BP), and outer walker primer (OWP), are involved in bridging PCR. The BP is fabricated by splicing OWP to the 5'-end of IWP's 5'-part. A bridging PCR set is constituted by three rounds of amplification reactions, sequentially performed by IWP, BP plus OWP, and OWP, respectively pairing with three nested sequence-specific primers (SSP). A non-target product arising from IWP alone undergoes end-lengthening mediated by BP. This modified non-target product is a preferentially formed hairpin between the lengthened ends, instead of binding with shorter OWP. Meanwhile, a non-target product, triggered by SSP alone or SSP plus IWP, is removed by nested SSP. As a result, only the target DNA is accumulated. The efficacy of bridging PCR was validated by walking the gadA/R genes of Levilactobacillus brevis CD0817 and the hyg gene of rice.
Collapse
|
14
|
Pei J, Sun T, Wang L, Pan Z, Guo X, Li H. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet 2022; 13:969840. [PMID: 36330444 PMCID: PMC9623105 DOI: 10.3389/fgene.2022.969840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3′) to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5′ end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3′ end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.
Collapse
Affiliation(s)
- Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|