1
|
Li Z, Yuan J, Dai Y, Xia Y. Integration of serum pharmacochemistry and metabolomics to reveal the underlying mechanism of shaoyao-gancao-fuzi decoction to ameliorate rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117910. [PMID: 38373664 DOI: 10.1016/j.jep.2024.117910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, Shaoyao-Gancao-Fuzi decoction (SGFD) has been a reliable traditional Chinese medicine for treating rheumatoid arthritis (RA). Despite its long history of use, the specific active components and underlying mechanisms of its therapeutic effects have yet to be fully understood. AIM OF THE STUDY The aim of this study was to investigate the active ingredients and therapeutic effects of SGFD on RA, and to further understand its underlying mechanism. MATERIALS AND METHODS The chemical constituents in SGFD extract and in rat serum after oral administration of SGFD were identified and evaluated using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS) together with various data-processing methods, respectively. The efficacy of SGFD was assessed by using an adjuvant-induced arthritis (AIA) rat model and lipopolysaccharide-stimulated RAW 264.7 cell. Subsequently, cell metabolomic was conducted to clarify the potential biomarkers and pathways. ELISA, RT-qPCR, and WB were used to verify the anti-arthritis mechanism of SGFD. RESULTS A total of 65 chemical constituents were identified in SGFD. 17 active components were distinguished in rat serum samples, of which 13 may be the main active ingredients for SGFD treatment of RA. The remarkable efficacy of SGFD in reducing the symptoms of RA is evident through its ability to alleviate the redness and swelling of the affected paws, as well as reduce the infiltration of inflammatory cells. Cell experiments revealed that rat serum of SGFD reduced IL-1β, IL-6, and TNF-α secretion in RAW 264.7 cells. 27 potential biomarkers were identified through cell metabolomics analysis. The arachidonic acid (AA) metabolism signaling pathway was activated in RA, which could be reversed by rat serum of SGFD. SGFD effectively inhibited the expression and transformation of AA by downregulating the expression of key enzymes, including phospholipase A and cyclooxygenase. CONCLUSION SGFD may ameliorate RA symptoms by regulating the AA-PGH2-PGE2/PGF2α pathway. The main active components include songorine, fuziline, neoline, albiflorin, paeoniflorin, liquiritin, benzoylmesaconine, isoformononetin, liquiritigenin, isoliquiritigenin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid.
Collapse
Affiliation(s)
- Ze Li
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Jing Yuan
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yue Dai
- Department of Pharmacology of Chinses Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
2
|
Chakraborty S, Gupta NV, Sastri KT, M S, Chand P, Kumar H, M. Osmani RA, Gowda DV, Jaind V. Current progressions in transdermal drug delivery systems for management of rheumatoid and osteoarthritis: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Jiang Y, Zheng Y, Dong Q, Liao W, Pang L, Chen J, He Q, Zhang J, Luo Y, Li J, Fu C, Fu Q. Metabolomics combined with network pharmacology to study the mechanism of Shentong Zhuyu decoction in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114846. [PMID: 34826542 DOI: 10.1016/j.jep.2021.114846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong Zhuyu decoction (STZYD) was first recorded in the classic of "Yilin Gaicuo" written by Wang Qingren, and recognized by the Chinese National Administration of Traditional Chinese Medicine as one of the 100 classic formulas. The formula has been widely used in the treatment of rheumatoid arthritis (RA) with significant clinical effects. However, its mechanism of action is not completely clear. AIM OF THE STUDY This study aimed to explore the mechanism of STZYD in the treatment of RA by network pharmacology and metabolomics. MATERIALS AND METHODS The effects of STZYD anti-RA were investigated by paw swelling, arthritis score, cytokine level, histopathological and micro-CT analysis in adjuvant-induced arthritis (AIA) rats. The chemical constituents of STZYD and absorbed constituents in AIA rat serum were analyzed by UPLC-Q-Exactive MS/MS. Based on the characterized chemical components, the network pharmacology was used to find potential targets and signaling pathways of STZYD in RA treatment. Meanwhile, the predicted pathway was determined by the Western blot (WB). Subsequently, non-targeted metabolomics of serum was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of STZYD in the treatment of RA based on LC-MS technology. RESULTS STZYD significantly alleviated RA symptoms by improving paw redness and swelling, bone and cartilage damage, synovial hyperplasia, and infiltration of inflammatory cells, and decreased the generation of pro-inflammatory cytokines IL-1β, IL-6, IL-17A and TNF-α in AIA rats. Totally, 59 chemical components of STZYD and 24 serum migrant ingredients were identified. A total of 655 genes of potential bioactive components in STZYD and 1025 related genes of RA were obtained. TNF signaling pathway was considered to one of the main signaling pathways of STZYD anti-RA by KEGG analysis, including a wide range intracellular signaling pathways. NF-κB signaling pathway regulates inflammation and immunity in the TNF signaling pathway. STZYD markedly inhibited the expression of NF-κB signaling pathway. Ten potential biomarkers were found in metabolomics based on LC-MS technology. Alanine, aspartate and glutamate metabolism, arachidonic acid metabolism are the most related pathways of STZYD anti-RA. CONCLUSION The study based on serum pharmacochemistry, network pharmacology and metabolomics indicated that STZYD can improve RA through regulating inflammation and immunity related pathways, and provided a new possibility for treatment of RA.
Collapse
Affiliation(s)
- Yanping Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yongfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qinman He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuanhong Luo
- Chengdu Jingze Biopharmaceutical Co.,Ltd, Chengdu, 611100, China.
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
He T, Sun S. Evaluation of the therapeutic efficacy of human bone marrow mesenchymal stem cells with COX-2 silence and TGF-β3 overexpression in rabbits with antigen-induced arthritis. Exp Cell Res 2022; 410:112945. [PMID: 34838812 DOI: 10.1016/j.yexcr.2021.112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs), especially genetically modified MSCs, have become a promising therapeutic approach for the treatment of rheumatoid arthritis (RA) through modulating immune responses. However, most MSCs used in the treatment of RA are modified based on a single gene. In this study, we evaluated the therapeutic effects of human BMSCs (hBMSCs) with COX-2 silence and TGF-β3 overexpression in the treatment of RA in a rabbit model. MATERIALS AND METHODS hBMSCs were cotransfected with shCOX-2 and TGF-β3 through lentiviral vector delivery. After SPIO-Molday ION Rhodamine-B™ (MIRB) labeling, lenti-shCOX2-TGF-β3 hBMSCs, lenti-shCOX2 hBMSCs, lenti-TGF-β3 hBMSCs, hBMSCs without genetic modification, or phosphate-buffered saline (PBS) were injected into the knee joint of rabbits with antigen-induced arthritis (AIA). The diameter of the knee joint and soft-tissue swelling score (STS) were recorded, and the levels of inflammatory mediators, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) were evaluated by ELISA. Clinical 3.0T MR imaging (MRI) was used to track the distribution and dynamic migration of hBMSCs in the joint. Histopathological and immunohistochemical assays were conducted to localize labeled hBMSCs and assess the alteration of synovial hyperplasia, inflammatory cell infiltration, and cartilage damage. RESULTS COX-2 silencing and TGF-β3 overexpression in hBMSCs were confirmed through real-time PCR and Western blot analyses. Reduced joint diameter, soft-tissue swelling (STS) score, and PGE2, IL-1β, and TNF-α expression were detected 4 weeks after injection of MIRB-labeled lenti-shCOX2-TGF-β3 hBMSCs into the joint in rabbits with AIA. Eight weeks after hBMSC injection, reduced inflammatory cell infiltration, improved hyperplasia of the synovial lining, recovered cartilage damage, and increased matrix staining were observed in joints injected with lenti-shCOX2-TGF-β3 hBMSCs and lenti-shCOX2 hBMSCs. Slight synovial hyperplasia, no surface fibrillation, and strong positive expression of collagen II staining in chondrocytes and cartilage matrix were detected in the joints 12 weeks after injection of lenti-shCOX2-TGF-β3 hBMSCs. In addition, hBMSCs were detected by MRI imaging throughout the process of hBMSC treatment. CONCLUSION Intra-articular injection of hBMSCs with COX-2 silence and TGFβ3 overexpression not only significantly inhibited joint inflammation and synovium hyperplasia, but also protected articular cartilage at the early stage. In addition, intra-articular injection of hBMSCs with COX-2 silence and TGFβ3 overexpression promoted chondrocyte and matrix proliferation. This study provides an alternative therapeutic strategy for the treatment of RA using genetically modified hBMSCs.
Collapse
Affiliation(s)
- Tian He
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Orthopedics Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong, 264400, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Shi YB. The 2016 Ming K Jeang Award for Excellence in Cell & Bioscience. Cell Biosci 2017; 7:40. [PMID: 28815012 PMCID: PMC5557068 DOI: 10.1186/s13578-017-0169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/03/2022] Open
Abstract
Two research groups led by Dr. Jim Hu of University of Toronto, Canada and Dr. Renping Zhou of Rutgers University, USA, respectively, won the 2016 Ming K Jeang Award for Excellence in Cell & Bioscience.
Collapse
Affiliation(s)
- Yun-Bo Shi
- The National Institutes of Health, Bethesda, MD USA
| |
Collapse
|