1
|
Cao DF, Zhou XY, Guo Q, Xiang MY, Bao MH, He BS, Mao XY. Unveiling the role of histone deacetylases in neurological diseases: focus on epilepsy. Biomark Res 2024; 12:142. [PMID: 39563472 PMCID: PMC11575089 DOI: 10.1186/s40364-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Epilepsy remains a prevalent chronic neurological disease that is featured by aberrant, recurrent and hypersynchronous discharge of neurons and poses a great challenge to healthcare systems. Although several therapeutic interventions are successfully utilized for treating epilepsy, they can merely provide symptom relief but cannot exert disease-modifying effect. Therefore, it is of urgent need to explore other potential mechanism to develop a novel approach to delay the epileptic progression. Since approximately 30 years ago, histone deacetylases (HDACs), the versatile epigenetic regulators responsible for gene transcription via binding histones or non-histone substrates, have grabbed considerable attention in drug discovery. There are also substantial evidences supporting that aberrant expressions and/activities of HDAC isoforms are reported in epilepsy and HDAC inhibitors (HDACi) have been successfully utilized for therapeutic purposes in this condition. However, the specific mechanisms underlying the role of HDACs in epileptic progression have not been fully understood. Herein, we reviewed the basic information of HDACs, summarized the recent findings associated with the roles of diverse HDAC subunits in epilepsy and discussed the potential regulatory mechanisms by which HDACs affected the development of epilepsy. Additionally, we also provided a brief discussion on the potential of HDACs as promising therapeutic targets for epilepsy treatment, serving as a valuable reference for basic study and clinical translation in epilepsy field.
Collapse
Affiliation(s)
- Dan-Feng Cao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- The First Clinical College, Changsha Medical University, Changsha, 410219, China
| | - Xin-Yu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Qian Guo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming-Yao Xiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Mei-Hua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Bin-Sheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Liu ZY, Li YQ, Wang DL, Wang Y, Qiu WT, Qiu YY, Zhang HL, You QL, Liu SM, Liang QN, Wu EJ, Hu BJ, Sun XD. Agrin-Lrp4 pathway in hippocampal astrocytes restrains development of temporal lobe epilepsy through adenosine signaling. Cell Biosci 2024; 14:66. [PMID: 38783336 PMCID: PMC11112884 DOI: 10.1186/s13578-024-01241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.
Collapse
Affiliation(s)
- Zi-Yang Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Die-Lin Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He-Lin Zhang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang-Long You
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi-Min Liu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiu-Ni Liang
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of GFNeurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhao X, Huang G, Xie Z, Mo Y, Zhu H, Gao Y, Han Y, Tang W. Effects of Anti-Seizure Medication on Neuregulin-1 Gene and Protein in Patients with First-Episode Focal Epilepsy. Neuropsychiatr Dis Treat 2024; 20:837-844. [PMID: 38618155 PMCID: PMC11012762 DOI: 10.2147/ndt.s438942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Neuregulin-1 (NRG-1) appears to play a role in the pathogenesis of several neuropsychiatric disorders, including epilepsy. We conducted a study to investigate the effect of anti-seizure medication on NRG-1 mRNA and NRG-1 protein levels in patients with first-episode focal epilepsy. Methods The levels of NRG-1 mRNA isoforms (type I, II, III, and IV) in peripheral blood mononuclear cells (PBMCs) of 39 healthy controls, 39 first-episode focal epilepsy patients before anti-seizure medication (ASM) therapy and four weeks after administration of ASM were measured by RT-qPCR, and the levels of NRG-1 protein in the serum of samples of each group were determined using ELISA. In addition the relationship between efficacy, NRG-1 mRNA expression, and NRG-1 protein expression was analyzed. Results The levels of NRG-1 mRNA progressively increased in patients with first-episode focal epilepsy treated with ASM and were distinctly different from those before medication, but remained lower than in healthy controls (all P < 0.001). Before and after drug administration, NRG-1 protein levels were substantially higher in epileptic patients than in healthy controls, and no significant changes were detected with prolonged follow-up (P < 0.001). Patients with epilepsy who utilized ASM were able to control seizures with an overall efficacy of 97.4%. There was a negative correlation between NRG-1 mRNA levels and efficacy: as NRG-1 mRNA levels increased, seizures reduced (all P < 0.05). Conclusion Our research indicated that NRG-1 may play a role in the pathophysiology of epilepsy. NRG-1 mRNA may provide ideas for the discovery of novel epilepsy therapeutic markers and therapeutic targets for novel ASM.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People’s Republic of China
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Guijiang Huang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhenrong Xie
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yaxiong Mo
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Hongxuan Zhu
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yajie Gao
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yanbing Han
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei Tang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
4
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
5
|
HAT- and HDAC-Targeted Protein Acetylation in the Occurrence and Treatment of Epilepsy. Biomedicines 2022; 11:biomedicines11010088. [PMID: 36672596 PMCID: PMC9856006 DOI: 10.3390/biomedicines11010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.
Collapse
|
6
|
Wang S, He X, Bao N, Chen M, Ding X, Zhang M, Zhao L, Wang S, Jiang G. Potentials of miR-9-5p in promoting epileptic seizure and improving survival of glioma patients. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Epilepsy affects over 70 million people worldwide; however, the underlying mechanisms remain unclear. MicroRNAs (miRNAs) have essential functions in epilepsy. miRNA-9, a brain-specific/enriched miRNA, plays a role in various nervous system diseases and tumors, but whether miRNA-9 is involved in epilepsy and glioma-associated epilepsy remains unknown. Therefore, we aimed to explore the potential role of miR-9-5p in seizures and its effect on the survival of glioma patients, in order to provide new targets for the treatment of epilepsy and glioma.
Methods
The YM500v2 database was used to validate the expression of hsa-miR-9-5p in tissues. Moreover, qRT-PCR was performed to investigate the expression of miR-9-5p in temporal lobe epilepsy patients and rats with lithium-pilocarpine-induced seizures. Recombinant adeno-associated virus containing miR-9-5p was constructed to overexpress miR-9-5p in vivo. The effects of miR-9-5p on the behavior and electroencephalographic activities of the lithium-pilocarpine rat model of epilepsy were tested. Bioinformatics analysis was used to predict the targets of miR-9-5p and explore its potential role in epilepsy and glioma-associated epilepsy.
Results
The expression of miR-9-5p increased at 6 h and 7 days after lithium-pilocarpine-induced seizures in rats. Overexpression of miR-9-5p significantly shortened the latency of seizures and increased seizure intensity at 10 min and 20 min after administration of pilocarpine (P < 0.05). Predicted targets of miR-9-5p were abundant and enriched in the brain, and affected various pathways related to epilepsy and tumor. Survival analysis revealed that overexpression of miR-9-5p significantly improved the survival of patients from with low-grade gliomas and glioblastomas. The involvement of miR-9-5p in the glioma-associated epileptic seizures and the improvement of glioma survival may be related to multiple pathways, including the Rho GTPases and hub genes included SH3PXD2B, ARF6, and ANK2.
Conclusions
miR-9-5p may play a key role in promoting epileptic seizures and improving glioma survival, probably through multiple pathways, including GTPases of the Rho family and hub genes including SH3PXD2B, ARF6 and ANK2. Understanding the roles of miR-9-5p in epilepsy and glioma and the underlying mechanisms may provide a theoretical basis for the diagnosis and treatment of patients with epilepsy and glioma.
Collapse
|
7
|
Kumar A, Kumari S, Singh D. Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2022; 20:2034-2049. [PMID: 35450526 PMCID: PMC9886834 DOI: 10.2174/1570159x20666220420130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD's breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India,Address correspondence to this author at the Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Tel: +91-9417923132; E-mails: ;
| |
Collapse
|
8
|
Elevated peripheral Neuregulin-1 protein levels in non-medicated focal epilepsy patients. J Clin Neurosci 2022; 102:1-4. [DOI: 10.1016/j.jocn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
|
9
|
Abstract
Lysine acetylation is the second most well-studied post-translational modification after phosphorylation. While phosphorylation regulates signaling cascades, one of the most significant roles of acetylation is regulation of chromatin structure. Acetyl-coenzyme A (acetyl-CoA) serves as the acetyl group donor for acetylation reactions mediated by lysine acetyltransferases (KATs). On the other hand, NAD+ serves as the cofactor for lysine deacetylases (KDACs). Both acetyl-CoA and NAD+ are metabolites integral to energy metabolism, and therefore, their metabolic flux can regulate the activity of KATs and KDACs impacting the epigenome. In this chapter, we review our current understanding of how metabolic pathways regulate lysine acetylation in normal and cancer cells.
Collapse
Affiliation(s)
- Siddharth Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Parijat Senapati
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|