1
|
Belletti A, Bonizzoni MA, Labanca R, Osenberg P, Bugo S, Pontillo D, Pieri M, Landoni G, Zangrillo A, Scandroglio AM. Pancreatic Stone Protein as Sepsis Biomarker in Patients Requiring Mechanical Circulatory Support: A Pilot Observational Study. J Cardiothorac Vasc Anesth 2025; 39:1229-1235. [PMID: 39971654 DOI: 10.1053/j.jvca.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To demonstrate for the first time the performance of the novel biomarker pancreatic stone protein (PSP) in predicting the occurrence of sepsis in cardiogenic shock patients requiring mechanical circulatory support. Many patients with cardiogenic shock develop sepsis and the timely identification and treatment of sepsis remains a key factor to improve outcome and avoid unnecessary antibiotics treatment. DESIGN Observational study recording PSP values for 5 days or until intensive care unit discharge (whichever came first) to analyze its kinetic and evaluate a potential correlation with sepsis development. SETTING Cardiac intensive care unit. PARTICIPANTS 32 adult patients with cardiogenic shock requiring mechanical circulatory support, 28% women with a median age of 68 years (range, 60-72 years). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The main causes of cardiogenic shock were postcardiotomy (50%) and acute myocardial infarction (25%). Patients were supported with and intra-aortic balloon pump (62.5%), Impella (6.3%), or venoarterial extracorporeal membrane oxygenation (3.1%); 28% of patients had more than 1 support device. Forty percent of patients developed sepsis during their intensive care unit stay. The overall median peak PSP reached was 389.5 ng/mL (interquartile range, 222-601 ng/mL), with a peak on day 2. The peak was higher in patients who developed sepsis (601 ng/mL [interquartile range, 556-601 ng/mL] in patients with sepsis v 257 ng/mL [interquartile range, 207-576 ng/mL] in patients without ). In these patients also daily PSP values from day 2 to 5 were higher. CONCLUSIONS Patients supported with mechanical circulatory support who develop sepsis present with significantly higher PSP values than those who do not develop sepsis. PSP values are generally high in this population, even in patients not developing sepsis.
Collapse
Affiliation(s)
- Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Matteo A Bonizzoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Labanca
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paul Osenberg
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Cardiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Bugo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Domenico Pontillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Pieri
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Janssen RME, Oerlemans AJM, Bos N, van der Hoeven JG, Oostdijk EAN, Derde LPG, Ten Oever J, Wertheim HFL, Schouten JA, Hulscher MEJL. Duration of antibiotic therapy in the intensive care unit: factors influencing decision-making during multidisciplinary meetings. BMJ Qual Saf 2025:bmjqs-2024-017796. [PMID: 39788727 DOI: 10.1136/bmjqs-2024-017796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES In the intensive care unit (ICU), antibiotics are often given longer than recommended in guidelines. A better understanding of the factors influencing antibiotic therapy duration is needed to develop improvement strategies to effectively address these drivers of excessive duration. This study aimed to explore the determinants of adherence to recommended antibiotic therapy durations among healthcare professionals involved in antibiotic decision-making within the ICU, focusing on multidisciplinary meetings (MDMs). METHODS Semistructured interviews were held with healthcare professionals involved in antibiotic decision-making during MDMs in four Dutch ICUs. Participants included intensivists, clinical microbiologists and ICU residents. Transcripts were analysed using deductive and inductive content analysis methods. RESULTS A total of 20 participants were interviewed. The interviews revealed that decision-making regarding antibiotic therapy duration is a complex process, primarily centred around professional interactions during MDMs and involving a broad range of determinants. These determinants were categorised into the following four steps: (1) the introduction of duration as a topic for discussion in the MDM (eg, lack of priority to discuss antibiotic therapy duration); (2) the discussion of antibiotic therapy duration itself (eg, lack of core members during MDM); (3) the establishment of a concrete decision (eg, lack of documentation of the decisions made); (4) the execution of the decision (eg, forgetting to stop antibiotics). CONCLUSIONS Our study identified numerous factors that influence decisions about the duration of antibiotic therapy during MDMs in the ICU. By describing these factors throughout the decision-making process, we provided valuable insights into barriers that commonly arise in specific steps, highlighting critical areas for improvement. Daily MDMs were deemed essential for informed decision-making regarding antibiotic therapy duration by the interviewees. Strategies to improve appropriate duration in the ICU should prioritise strengthening interdisciplinary communication between healthcare professionals and adding structure to these meetings.
Collapse
Affiliation(s)
- Robin M E Janssen
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, Gelderland, Netherlands
- IQ Health Science Department, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Anke J M Oerlemans
- IQ Health Science Department, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Nynke Bos
- IQ Health Science Department, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Evelien A N Oostdijk
- Department of Intensive Care Medicine, Rijnstate Hospital, Arnhem, Gelderland, Netherlands
| | - Lennie P G Derde
- Department of Intensive Care Medicine, UMC Utrecht, Utrecht, Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Heiman F L Wertheim
- Department of Medical Microbiology, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Jeroen A Schouten
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| | - Marlies E J L Hulscher
- IQ Health Science Department, Radboud university medical center, Nijmegen, Gelderland, Netherlands
| |
Collapse
|
3
|
Tait JR, Anderson D, Nation RL, Creek DJ, Landersdorfer CB. Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0108123. [PMID: 38376189 PMCID: PMC10989016 DOI: 10.1128/aac.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Extracellular bacterial metabolites have potential as markers of bacterial growth and resistance emergence but have not been evaluated in dynamic in vitro studies. We investigated the dynamic metabolomic footprint of a multidrug-resistant hypermutable Pseudomonas aeruginosa isolate exposed to ceftolozane/tazobactam as continuous infusion (4.5 g/day, 9 g/day) in a hollow-fiber infection model over 7-9 days in biological replicates (n = 5). Bacterial samples were collected at 0, 7, 23, 47, 71, 95, 143, 167, 191, and 215 h, the supernatant quenched, and extracellular metabolites extracted. Metabolites were analyzed via untargeted metabolomics, including hierarchical clustering and correlation with quantified total and resistant bacterial populations. The time-courses of five (of 1,921 detected) metabolites from enriched pathways were mathematically modeled. Absorbed L-arginine and secreted L-ornithine were highly correlated with the total bacterial population (r -0.79 and 0.82, respectively, P<0.0001). Ribose-5-phosphate, sedoheptulose-7-phosphate, and trehalose-6-phosphate correlated with the resistant subpopulation (0.64, 0.64, and 0.67, respectively, P<0.0001) and were likely secreted due to resistant growth overcoming oxidative and osmotic stress induced by ceftolozane/tazobactam. Using pharmacokinetic/pharmacodynamic-based transduction models, these metabolites were successfully modeled based on the total or resistant bacterial populations. The models well described the abundance of each metabolite across the differing time-course profiles of biological replicates, based on bacterial killing and, importantly, resistant regrowth. These proof-of-concept studies suggest that further exploration is warranted to determine the generalizability of these findings. The metabolites modeled here are not exclusive to bacteria. Future studies may use this approach to identify bacteria-specific metabolites correlating with resistance, which would ultimately be extremely useful for clinical translation.
Collapse
Affiliation(s)
- Jessica R. Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Gulyás E, Horváth IL, Engh MA, Bunduc S, Dembrovszky F, Fehérvári P, Bánvölgyi A, Csupor D, Hegyi P, Karvaly GB. Assessment of the practical impact of adjusting beta-lactam dosages based on therapeutic drug monitoring in critically ill adult patients: a systematic review and meta-analysis of randomized clinical trials and observational studies. Sci Rep 2024; 14:7793. [PMID: 38565898 PMCID: PMC10987621 DOI: 10.1038/s41598-024-58200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
An estimated 70% of critically ill patients receive antibiotics, most frequently beta-lactams. The pharmacokinetic properties of these substances in this patient population are poorly predictable. Therapeutic drug monitoring (TDM) is helpful in making personalized decisions in this field, but its overall impact as a clinical decision-supporting tool is debated. We aimed to evaluate the clinical implications of adjusting beta-lactam dosages based on TDM in the critically ill population by performing a systematic review and meta-analysis of available investigations. Randomized controlled trials and observational studies were retrieved by searching three major databases. The intervention group received TDM-guided beta-lactam treatment, that is, at least one dose reconsideration based on the result of the measurement of drug concentrations, while TDM-unadjusted dosing was employed in the comparison group. The outcomes were evaluated using forest plots with random-effects modeling and subgroup analysis. Eight eligible studies were identified, including 1044 patients in total. TDM-guided beta-lactam treatment was associated with improved clinical cure from infection [odds ratio (OR): 2.22 (95% confidence interval (CI): 1.78-2.76)] and microbiological eradication [OR: 1.72 (CI: 1.05-2.80)], as well as a lower probability of treatment failure [OR: 0.47 (CI: 0.36-0.62)], but the heterogeneity of studies was remarkably high, especially in terms of mortality (70%). The risk of bias was moderate. While the TDM-guided administration of beta-lactams to critically ill patients has a favorable impact, standardized study designs and larger sample sizes are required for developing evidence-based protocols in this field.
Collapse
Affiliation(s)
- Eszter Gulyás
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 4 Nagyvarad ter, Budapest, 1089, Hungary
| | - István László Horváth
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- First Department of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Fehérvári
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - András Bánvölgyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, 4 Nagyvarad ter, Budapest, 1089, Hungary.
| |
Collapse
|
5
|
Nielsen ND, Dean JT, Shald EA, Conway Morris A, Povoa P, Schouten J, Parchim N. When to Stop Antibiotics in the Critically Ill? Antibiotics (Basel) 2024; 13:272. [PMID: 38534707 DOI: 10.3390/antibiotics13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Over the past century, antibiotic usage has skyrocketed in the treatment of critically ill patients. There have been increasing calls to establish guidelines for appropriate treatment and durations of antibiosis. Antibiotic treatment, even when appropriately tailored to the patient and infection, is not without cost. Short term risks-hepatic/renal dysfunction, intermediate effects-concomitant superinfections, and long-term risks-potentiating antimicrobial resistance (AMR), are all possible consequences of antimicrobial administration. These risks are increased by longer periods of treatment and unnecessarily broad treatment courses. Recently, the literature has focused on multiple strategies to determine the appropriate duration of antimicrobial therapy. Further, there is a clinical shift to multi-modal approaches to determine the most suitable timepoint at which to end an antibiotic course. An approach utilising biomarker assays and an inter-disciplinary team of pharmacists, nurses, physicians, and microbiologists appears to be the way forward to develop sound clinical decision-making surrounding antibiotic treatment.
Collapse
Affiliation(s)
- Nathan D Nielsen
- Division of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - James T Dean
- Division of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Elizabeth A Shald
- Department of Pharmacy, University of New Mexico Hospital, Albuquerque, NM 87131, USA
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Pedro Povoa
- NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, 5000 Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, 1449-005 Lisbon, Portugal
| | - Jeroen Schouten
- Department of Intensive Care Medicine, Radboud MC, 6525 GA Nijmegen, The Netherlands
| | - Nicholas Parchim
- Division of Critical Care, Department of Emergency Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Chai MG, Roberts NA, Dobbins C, Roberts JA, Cotta MO. Factors Influencing Integration and Usability of Model-Informed Precision Dosing Software in the Intensive Care Unit. Appl Clin Inform 2024; 15:388-396. [PMID: 38754464 PMCID: PMC11098592 DOI: 10.1055/s-0044-1786978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Antimicrobial dosing in critically ill patients is challenging and model-informed precision dosing (MIPD) software may be used to optimize dosing in these patients. However, few intensive care units (ICU) currently adopt MIPD software use. OBJECTIVES To determine the usability of MIPD software perceived by ICU clinicians and identify implementation barriers and enablers of software in the ICU. METHODS Clinicians (pharmacists and medical staff) who participated in a wider multicenter study using MIPD software were invited to participate in this mixed-method study. Participants scored the industry validated Post-study System Usability Questionnaire (PSSUQ, assessing software usability) and Technology Acceptance Model 2 (TAM2, assessing factors impacting software acceptance) survey. Semistructured interviews were used to explore survey responses. The framework approach was used to identify factors influencing software usability and integration into the ICU from the survey and interview data. RESULTS Seven of the eight eligible clinicians agreed to participate in the study. The PSSUQ usability scores ranked poorer than the reference norms (2.95 vs. 2.62). The TAM2 survey favorably ranked acceptance in all domains, except image. Qualitatively, key enablers to workflow integration included clear and accessible data entry, visual representation of recommendations, involvement of specialist clinicians, and local governance of software use. Barriers included rigid data entry systems and nonconformity of recommendations to local practices. CONCLUSION Participants scored the MIPD software below the threshold that implies good usability. Factors such as availability of software support by specialist clinicians was important to participants while rigid data entry was found to be a deterrent.
Collapse
Affiliation(s)
- Ming G. Chai
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Natasha A. Roberts
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland, Australia
| | - Chelsea Dobbins
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason A. Roberts
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, Nimes, France
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Australia
| | - Menino O. Cotta
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Janssen RME, Oerlemans AJM, van der Hoeven JG, Oostdijk EAN, Derde LPG, Ten Oever J, Wertheim HFL, Hulscher MEJL, Schouten JA. Decision-making regarding antibiotic therapy duration: An observational study of multidisciplinary meetings in the intensive care unit. J Crit Care 2023; 78:154363. [PMID: 37393864 DOI: 10.1016/j.jcrc.2023.154363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Antibiotic therapy is commonly prescribed longer than recommended in intensive care patients (ICU). We aimed to provide insight into the decision-making process on antibiotic therapy duration in the ICU. METHODS A qualitative study was conducted, involving direct observations of antibiotic decision-making during multidisciplinary meetings in four Dutch ICUs. The study used an observation guide, audio recordings, and detailed field notes to gather information about the discussions on antibiotic therapy duration. We described the participants' roles in the decision-making process and focused on arguments contributing to decision-making. RESULTS We observed 121 discussions on antibiotic therapy duration in sixty multidisciplinary meetings. 24.8% of discussions led to a decision to stop antibiotics immediately. In 37.2%, a prospective stop date was determined. Arguments for decisions were most often brought forward by intensivists (35.5%) and clinical microbiologists (22.3%). In 28.9% of discussions, multiple healthcare professionals participated equally in the decision. We identified 13 main argument categories. While intensivists mostly used arguments based on clinical status, clinical microbiologists used diagnostic results in the discussion. CONCLUSIONS Multidisciplinary decision-making regarding the duration of antibiotic therapy is a complex but valuable process, involving different healthcare professionals, using a variety of argument-types to determine the duration of antibiotic therapy. To optimize the decision-making process, structured discussions, involvement of relevant specialties, and clear communication and documentation of the antibiotic plan are recommended.
Collapse
Affiliation(s)
- Robin M E Janssen
- Radboud university medical center, Department of Intensive Care Medicine, Nijmegen, the Netherlands; Radboud university medical center, Scientific Center for Quality of Healthcare (IQ healthcare), Nijmegen, the Netherlands; Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands.
| | - Anke J M Oerlemans
- Radboud university medical center, Scientific Center for Quality of Healthcare (IQ healthcare), Nijmegen, the Netherlands
| | | | | | - Lennie P G Derde
- University Medical Center Utrecht, Department of Intensive Care Medicine, Utrecht, the Netherlands
| | - Jaap Ten Oever
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands; Radboud university medical center, Department of Internal Medicine, Nijmegen, the Netherlands
| | - Heiman F L Wertheim
- Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands; Radboud university medical center, Department of Medical Microbiology, Nijmegen, the Netherlands
| | - Marlies E J L Hulscher
- Radboud university medical center, Scientific Center for Quality of Healthcare (IQ healthcare), Nijmegen, the Netherlands; Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| | - Jeroen A Schouten
- Radboud university medical center, Department of Intensive Care Medicine, Nijmegen, the Netherlands; Radboud university medical center, Scientific Center for Quality of Healthcare (IQ healthcare), Nijmegen, the Netherlands; Radboud university medical center, Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands
| |
Collapse
|
8
|
Mazzoleni L, Zovi A, D'Angelo C, Borsino C, Cocco N, Lombardo RC, Ranieri R. Planning and development of an antimicrobial stewardship program in penitentiary facilities: strategies to optimize therapeutic prescribing and reduce the incidence of antibiotic resistance. Front Public Health 2023; 11:1233522. [PMID: 37954056 PMCID: PMC10634441 DOI: 10.3389/fpubh.2023.1233522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction In correctional facilities, due to the high incidence of bacterial infections, antibiotics are widely prescribed. As a result, it may occur a massive and improper use of antibiotics, which promotes the development of antibiotic-resistant bacteria. However, in literature, specific experiences, interventions or guidelines aimed to optimize their prescription within prisons are sporadic. Objectives In an Italian hospital where belong patients from four penitentiary institutions, a multidisciplinary team has implemented an antimicrobial stewardship project. The aim of the project was to reduce the incidence of antibiotic resistance in penitentiary institutions by optimizing and rationalizing antibiotic prescribing. Methods Following the analysis of microbiological prevalence and antibiotic consumption data within correctional facilities, the Antimicrobial Stewardship Team developed operational tools to support prison healthcare staff to manage properly antibiotic therapies. Results The analysis showed a gradual increase in antibiotic resistance: in 2021 the prevalence of resistant microorganisms was 1.75%, four times higher than in 2019. In contrast, between 2019 and 2021, antibiotic consumption decreased by 24%. Based on consumption data, pharmacy has drafted an antibiotic formulary for correctional facilities, supplemented with guidelines and data sheets, and also developed a prescription form for critical antibiotics. Conclusion Results showed an increasing incidence of antibiotic resistance within prisons, highlighting the need to establish a dedicated antimicrobial stewardship program. This project may impact positively not only on prisoners, but also for the entire community, as prisons can be considered as places of health education and promotion.
Collapse
Affiliation(s)
| | - Andrea Zovi
- Pharmacy, Santi Paolo e Carlo Hospital, Milan, Italy
| | - Cinzia D'Angelo
- Department of Pharmaceutics, ATS Metropolitan City of Milan, Milan, Italy
| | | | - Nicola Cocco
- Penitentiary Infectious Diseases Unit, Santi Paolo e Carlo Hospital, Milan, Italy
| | | | - Roberto Ranieri
- Penitentiary Infectious Diseases Unit, Santi Paolo e Carlo Hospital, Milan, Italy
| |
Collapse
|
9
|
Giamarellou H, Galani L, Karavasilis T, Ioannidis K, Karaiskos I. Antimicrobial Stewardship in the Hospital Setting: A Narrative Review. Antibiotics (Basel) 2023; 12:1557. [PMID: 37887258 PMCID: PMC10604258 DOI: 10.3390/antibiotics12101557] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing global threat of antibiotic resistance, which has resulted in countless fatalities due to untreatable infections, underscores the urgent need for a strategic action plan. The acknowledgment that humanity is perilously approaching the "End of the Miracle Drugs" due to the unjustifiable overuse and misuse of antibiotics has prompted a critical reassessment of their usage. In response, numerous relevant medical societies have initiated a concerted effort to combat resistance by implementing antibiotic stewardship programs within healthcare institutions, grounded in evidence-based guidelines and designed to guide antibiotic utilization. Crucial to this initiative is the establishment of multidisciplinary teams within each hospital, led by a dedicated Infectious Diseases physician. This team includes clinical pharmacists, clinical microbiologists, hospital epidemiologists, infection control experts, and specialized nurses who receive intensive training in the field. These teams have evidence-supported strategies aiming to mitigate resistance, such as conducting prospective audits and providing feedback, including the innovative 'Handshake Stewardship' approach, implementing formulary restrictions and preauthorization protocols, disseminating educational materials, promoting antibiotic de-escalation practices, employing rapid diagnostic techniques, and enhancing infection prevention and control measures. While initial outcomes have demonstrated success in reducing resistance rates, ongoing research is imperative to explore novel stewardship interventions.
Collapse
Affiliation(s)
- Helen Giamarellou
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4 Erythrou Stavrou & Kifisias, Marousi, 15123 Athens, Greece; (L.G.); (T.K.); (I.K.)
| | - Lamprini Galani
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4 Erythrou Stavrou & Kifisias, Marousi, 15123 Athens, Greece; (L.G.); (T.K.); (I.K.)
| | - Theodoros Karavasilis
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4 Erythrou Stavrou & Kifisias, Marousi, 15123 Athens, Greece; (L.G.); (T.K.); (I.K.)
| | - Konstantinos Ioannidis
- Clinical Pharmacists, Hygeia General Hospital, 4 Erythrou Stavrou & Kifisias, Marousi, 15123 Athens, Greece;
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4 Erythrou Stavrou & Kifisias, Marousi, 15123 Athens, Greece; (L.G.); (T.K.); (I.K.)
| |
Collapse
|
10
|
Liang HH, Lin YC, Hung CC, Hou YC, Lin YH. Method Development for Determination of Doripenem in Human Plasma via Capillary Electrophoresis Coupled with Field-Enhanced Sample Stacking and Sweeping. Int J Mol Sci 2023; 24:13751. [PMID: 37762057 PMCID: PMC10531396 DOI: 10.3390/ijms241813751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we established a novel capillary electrophoresis method for monitoring the concentration of doripenem in human plasma. As a time-dependent antibiotic, doripenem maximizes its antibacterial effects and minimizes the potential for antibiotic resistance through careful therapeutic drug monitoring. Two online preconcentration techniques, field-enhanced sample stacking (FESS) and sweeping, were coupled to enhance the detection sensitivity. Briefly, an uncoated fused silica capillary (40 cm × 50 μm i.d) was rinsed with a high conductivity buffer (HCB) composed of 150 mM phosphate buffer (NaH2PO4, pH 2.5) and 20% methanol. A large sample plug prepared in a low-conductivity phosphate buffer (50 mM NaH2PO4, pH 2.5) was then hydrodynamically injected (5 psi, 80 s) into the capillary. Under an applied voltage of -30 kV, the analyte was accumulated at the FESS boundary and swept by the negatively charged micelles toward the UV detector. Plasma samples were pretreated by solid-phase extraction (SPE) to eliminate endogenous interferences. The validation results demonstrated a high coefficient of determination (r2 > 0.9995) for the regression curve with impressive precision and accuracy: relative standard deviation (RSD) <5.86% and relative error <4.63%. The limit of detection (LOD, S/N = 3) for doripenem was determined to be 0.4 μg/mL. Compared to the conventional micellar electrokinetic chromatography method, our developed method achieved a sensitivity enhancement of up to 488-fold for doripenem. Furthermore, the newly developed method successfully quantified doripenem concentrations in plasma samples obtained from patients accepting doripenem regimens, proving its application potential in the clinical realm.
Collapse
Affiliation(s)
- Hsin-Hua Liang
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Chin-Chuan Hung
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
11
|
Schinas G, Polyzou E, Spernovasilis N, Gogos C, Dimopoulos G, Akinosoglou K. Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics (Basel) 2023; 12:1255. [PMID: 37627675 PMCID: PMC10451180 DOI: 10.3390/antibiotics12081255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Patients referred to intensive care units (ICU) commonly contract infections caused by multidrug-resistant (MDR) bacteria, which are typically linked to complications and high mortality. There are numerous independent factors that are associated with the transmission of these pathogens in the ICU. Preventive multilevel measures that target these factors are of great importance in order to break the chain of transmission. In this review, we aim to provide essential guidance for the development of robust prevention strategies, ultimately ensuring the safety and well-being of patients and healthcare workers in the ICU. We discuss the role of ICU personnel in cross-contamination, existing preventative measures, novel technologies, and strategies employed, along with antimicrobial surveillance and stewardship (AMSS) programs, to construct effective and thoroughly described policy recommendations. By adopting a multifaceted approach that combines targeted interventions with broader preventive strategies, healthcare facilities can create a more coherent line of defense against the spread of MDR pathogens. These recommendations are evidence-based, practical, and aligned with the needs and realities of the ICU setting. In conclusion, this comprehensive review offers a blueprint for mitigating the risk of MDR bacterial transmission in the ICU, advocating for an evidence-based, multifaceted approach.
Collapse
Affiliation(s)
- Georgios Schinas
- Department of Medicine, University of Patras, 26504 Patras, Greece; (G.S.); (E.P.); (C.G.); (K.A.)
| | - Elena Polyzou
- Department of Medicine, University of Patras, 26504 Patras, Greece; (G.S.); (E.P.); (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | | | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Patras, Greece; (G.S.); (E.P.); (C.G.); (K.A.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Patras, Greece; (G.S.); (E.P.); (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
12
|
Sjövall F, Lanckohr C, Bracht H. What's new in therapeutic drug monitoring of antimicrobials? Intensive Care Med 2023; 49:857-859. [PMID: 37133741 PMCID: PMC10353963 DOI: 10.1007/s00134-023-07060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Fredrik Sjövall
- Intensive and perioperative medicine, Skane university hospital, Malmö, Sweden
| | - Christian Lanckohr
- Antibiotic Stewardship (ABS)-Team, Institut of Hygiene, University Hospital Münster, Münster, Germany
| | - Hendrik Bracht
- Central Enrgency Services, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
13
|
Williams PG, Tabah A, Cotta MO, Sandaradura I, Kanji S, Scheetz MH, Imani S, Elhadi M, Luque-Pardos S, Schellack N, Sanches C, Timsit JF, Xie J, Farkas A, Wilks K, Roberts JA. International survey of antibiotic dosing and monitoring in adult intensive care units. Crit Care 2023; 27:241. [PMID: 37331935 PMCID: PMC10278304 DOI: 10.1186/s13054-023-04527-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND In recent years, numerous dosing studies have been conducted to optimize therapeutic antibiotic exposures in patients with serious infections. These studies have led to the inclusion of dose optimization recommendations in international clinical practice guidelines. The last international survey describing dosing, administration and monitoring of commonly prescribed antibiotics for critically ill patients was published in 2015 (ADMIN-ICU 2015). This study aimed to describe the evolution of practice since this time. METHODS A cross-sectional international survey distributed through professional societies and networks was used to obtain information on practices used in the dosing, administration and monitoring of vancomycin, piperacillin/tazobactam, meropenem and aminoglycosides. RESULTS A total of 538 respondents (71% physicians and 29% pharmacists) from 409 hospitals in 45 countries completed the survey. Vancomycin was mostly administered as an intermittent infusion, and loading doses were used by 74% of respondents with 25 mg/kg and 20 mg/kg the most favoured doses for intermittent and continuous infusions, respectively. Piperacillin/tazobactam and meropenem were most frequently administered as an extended infusion (42% and 51%, respectively). Therapeutic drug monitoring was undertaken by 90%, 82%, 43%, and 39% of respondents for vancomycin, aminoglycosides, piperacillin/tazobactam, and meropenem, respectively, and was more frequently performed in high-income countries. Respondents rarely used dosing software to guide therapy in clinical practice and was most frequently used with vancomycin (11%). CONCLUSIONS We observed numerous changes in practice since the ADMIN-ICU 2015 survey was conducted. Beta-lactams are more commonly administered as extended infusions, and therapeutic drug monitoring use has increased, which align with emerging evidence.
Collapse
Affiliation(s)
- Paul G Williams
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia.
- Pharmacy Department, Sunshine Coast University Hospital, Birtinya, QLD, Australia.
| | - Alexis Tabah
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
- Intensive Care Unit, Redcliffe Hospital, Redcliffe, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Menino Osbert Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Indy Sandaradura
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
- Institute for Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Salmaan Kanji
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc H Scheetz
- Pharmacometric Center of Excellence, Departments of Pharmacy Practice and Pharmacology, College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | - Sahand Imani
- Nepean Blue Mountains Local Health District, Nepean Hospital, Sydney, NSW, Australia
| | | | - Sònia Luque-Pardos
- Pharmacy Department, Parc de Salut Mar, Barcelona, Spain
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- CIBER of Pharmacy, Saint Clare's Infectious Diseases (CIBERINFEC CB21/13/0002) Institute of Health Carlos III, Madrid, Spain
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cristina Sanches
- Campus Centro Oeste Dona Lindu, Federal University of Sao João del Rei, Divinópolis, Minas Gerais, Brasil
| | - Jean-Francois Timsit
- Assistance Publique Hôpitaux de Paris - Bichat hospital Medical and infectious diseases ICU (MI2), 75018, Paris, France
- IAME U 1137 Université Paris-Cité Site Bichat, 75018, Paris, France
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Andras Farkas
- Optimum Dosing Strategies, Bloomingdale, NJ, USA
- Department of Pharmacy, Saint Clare's Health, Denville, NJ, USA
| | - Kathryn Wilks
- Infectious Diseases Department, Sunshine Coast University Hospital, Birtinya, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
14
|
Mokrani D, Chommeloux J, Pineton de Chambrun M, Hékimian G, Luyt CE. Antibiotic stewardship in the ICU: time to shift into overdrive. Ann Intensive Care 2023; 13:39. [PMID: 37148398 PMCID: PMC10163585 DOI: 10.1186/s13613-023-01134-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Antibiotic resistance is a major health problem and will be probably one of the leading causes of deaths in the coming years. One of the most effective ways to fight against resistance is to decrease antibiotic consumption. Intensive care units (ICUs) are places where antibiotics are widely prescribed, and where multidrug-resistant pathogens are frequently encountered. However, ICU physicians may have opportunities to decrease antibiotics consumption and to apply antimicrobial stewardship programs. The main measures that may be implemented include refraining from immediate prescription of antibiotics when infection is suspected (except in patients with shock, where immediate administration of antibiotics is essential); limiting empiric broad-spectrum antibiotics (including anti-MRSA antibiotics) in patients without risk factors for multidrug-resistant pathogens; switching to monotherapy instead of combination therapy and narrowing spectrum when culture and susceptibility tests results are available; limiting the use of carbapenems to extended-spectrum beta-lactamase-producing Enterobacteriaceae, and new beta-lactams to difficult-to-treat pathogen (when these news beta-lactams are the only available option); and shortening the duration of antimicrobial treatment, the use of procalcitonin being one tool to attain this goal. Antimicrobial stewardship programs should combine these measures rather than applying a single one. ICUs and ICU physicians should be at the frontline for developing antimicrobial stewardship programs.
Collapse
Affiliation(s)
- David Mokrani
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Juliette Chommeloux
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Guillaume Hékimian
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Charles-Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
15
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
16
|
Onofrei MI, Ghiciuc CM, Luca CM, Postolache P, Sapaniuc C, Enache Leonte G, Rosu FM. Optimization of Therapy and the Risk of Probiotic Use during Antibiotherapy in Septic Critically Ill Patients: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:478. [PMID: 36984479 PMCID: PMC10056847 DOI: 10.3390/medicina59030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Optimizing the entire therapeutic regimen in septic critically ill patients should be based not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by considering possible drug-drug or drug-nutrient interactions. The aim of this narrative review is to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded. New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin, oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In the real-world practice, the use of probiotics with antibiotics is common; even data about the risk and benefits of probiotics are currently spares and inconclusive. According to current legislation, probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis, peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition, multidrug and drug-nutrient interactions in critically ill patients may increase the likelihood of adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.
Collapse
Affiliation(s)
- Maria Ioana Onofrei
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Pharmacology, Clinical Pharmacology and Algeziology, Department of Morpho-Functional Sciences II, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Catalina Mihaela Luca
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Sapaniuc
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Georgiana Enache Leonte
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Florin Manuel Rosu
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
- Department of Infectious Diseases, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
17
|
Aquino M, Tinoco M, Bicker J, Falcão A, Rocha M, Fortuna A. Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients. Antibiotics (Basel) 2023; 12:antibiotics12020373. [PMID: 36830283 PMCID: PMC9952017 DOI: 10.3390/antibiotics12020373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Amikacin is the antibiotic of choice for the treatment of Gram-negative infections, namely, those in neutropenic oncology patients. No populational pharmacokinetic studies are currently available reporting amikacin pharmacokinetics in neutropenic oncology patients despite their specific pathophysiological features and treatments. A large-scale retrospective study was herein conducted to specifically investigate the effects that tumor diseases have on the pharmacokinetic parameters of amikacin and identify whether chemotherapy, the lag time between administration of chemotherapy and amikacin, age and renal function contribute to amikacin pharmacokinetics in neutropenic cancer patients. A total of 1180 pharmacokinetic analysis from 629 neutropenic patients were enrolled. The daily dose administered to oncology patients was higher than that administered to non-oncology patients (p < 0.0001). No statistical differences were found in amikacin concentrations, probably because drug clearance was increased in cancer patients (p < 0.0001). Chemotherapy influenced amikacin pharmacokinetics and drug clearance decreased as the lag time enhanced. The elderly group revealed no statistical differences between the doses administered to both the oncology groups, suggesting that the impact of ageing is stronger than chemotherapy. Our research suggests that cancer patients require higher initial doses of amikacin, as well as when chemotherapy is received less than 30 days before amikacin treatment has started.
Collapse
Affiliation(s)
- Maria Aquino
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Tinoco
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Rocha
- Centro Hospitalar e Universitário de Coimbra (CHUC, EPE), 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
18
|
Morales Castro D, Dresser L, Granton J, Fan E. Pharmacokinetic Alterations Associated with Critical Illness. Clin Pharmacokinet 2023; 62:209-220. [PMID: 36732476 PMCID: PMC9894673 DOI: 10.1007/s40262-023-01213-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/04/2023]
Abstract
Haemodynamic, metabolic, and biochemical derangements in critically ill patients affect drug pharmacokinetics and pharmacodynamics making dose optimisation particularly challenging. Appropriate therapeutic dosing depends on the knowledge of the physiologic changes caused by the patient's comorbidities, underlying disease, resuscitation strategies, and polypharmacy. Critical illness will result in altered drug protein binding, ionisation, and volume of distribution; it will also decrease oral drug absorption, intestinal and hepatic metabolism, and renal clearance. In contrast, the resuscitation strategies and the use of vasoactive drugs may oppose these effects by leading to a hyperdynamic state that will increase blood flow towards the major organs including the brain, heart, kidneys, and liver, with the subsequent increase of drug hepatic metabolism and renal excretion. Metabolism is the main mechanism for drug clearance and is one of the main pharmacokinetic processes affected; it is influenced by patient-specific factors, such as comorbidities and genetics; therapeutic-specific factors, including drug characteristics and interactions; and disease-specific factors, like organ dysfunction. Moreover, organ support such as mechanical ventilation, renal replacement therapy, and extracorporeal membrane oxygenation may contribute to both inter- and intra-patient variability of drug pharmacokinetics. The combination of these competing factors makes it difficult to predict drug response in critically ill patients. Pharmacotherapy targeted to therapeutic goals and therapeutic drug monitoring is currently the best option for the safe care of the critically ill. The aim of this paper is to review the alterations in drug pharmacokinetics associated with critical illness and to summarise the available evidence.
Collapse
Affiliation(s)
- Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Linda Dresser
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - John Granton
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada.,Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, 585 University Avenue, 9-MaRS, Toronto, ON, M5G 2N2, Canada.,Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Hou J, Marriott D, Cattaneo D, Stocker S, Stojanova J, Alffenaar JW, Xiao C, Zhao Y, Gong H, Yan M. Therapeutic drug monitoring practices of anti-infectives: An Asia-wide cross-sectional survey. Front Pharmacol 2022; 13:992354. [PMID: 36299881 PMCID: PMC9589087 DOI: 10.3389/fphar.2022.992354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2023] Open
Abstract
Objectives: The current practice of therapeutic drug monitoring (TDM) in Asia is poorly documented. Our aim was to capture and describe TDM services delivered in hospitals across Asia, including aspects such as assay availability, interpretation of results and clinical decision-making. Methods: An online survey about anti-infective TDM practices, available in English and involving 50 questions, was promoted to people involved in TDM in Asia. The survey was open for responses from September to November 2021. Results: Of 207 responses from participants working in 14 Asian countries, 150 responses from 10 countries could be included. TDM services are available for many anti-infectives, providing assays based on chromatographic assays (100.0%) or immunoassays (39.3%). Clinicians (82.6%) and pharmacists (86.8%) were responsible for ordering and interpreting TDM. Most services provided reference targets and dose recommendations. Interpretative support was available to a varying degree. Assay results were available and clinical decision-making could be completed within 24 h in most hospitals (87.9% and 88.9% respectively). As the turnaround time of assay results decreased, the proportion of clinical decision-making completed within 8 h increased. Barriers to implementation of TDM included lack of funding or equipment (71.1%), lack of clinician interest or cooperation (47.0%), and lack of expertise (42.3%). Lack of expertise was the primary barrier for using precision dosing software (50.5%). Conclusion: There are significant differences and challenges in the development and practice of anti-infective TDM in Asian countries.
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Debbie Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent’s Hospital, Sydney, NSW, Australia
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST FBF Sacco University Hospital, Milan, Italy
| | - Sophie Stocker
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- UNSW Sydney, St Vincent’s Clinical School, Sydney, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital Sydney, Sydney, NSW, Australia
| | - Jana Stojanova
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital Sydney, Sydney, NSW, Australia
| | - Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Chenlin Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The optimal use of antimicrobials is necessary to slow resistance development and improve patient outcomes. Antimicrobial stewardship (AMS) is a bundle of interventions aimed at promoting the responsible use of antiinfectives. The ICU is an important field of activity for AMS because of high rates of antimicrobial use, high prevalence of resistant pathogens and complex pharmacology. This review discusses aims and interventions of AMS with special emphasis on the ICU. RECENT FINDINGS AMS-interventions can improve the quality and quantity of antimicrobial prescribing in the ICU without compromising patient outcomes. The de-escalation of empiric therapy according to microbiology results and the limitation of treatment duration are important steps to reduce resistance pressure. Owing to the complex nature of critical illness, the pharmacological optimization of antimicrobial therapy is an important goal in the ICU. AMS-objectives and strategies are also applicable to patients with sepsis. This is reflected in the most recent guidelines by the Surviving Sepsis Campaign. AMS-interventions need to be adapted to their respective setting and be mindful of local prescribing cultures and prescribers' attitudes. SUMMARY AMS in the ICU is effective and safe. Intensivists should be actively involved in AMS-programs and propagate responsible use of antimicrobials.
Collapse
Affiliation(s)
- Christian Lanckohr
- Antibiotic Stewardship Team, Institute of Hygiene, University Hospital Münster, Münster
| | - Hendrik Bracht
- Central Emergency Services, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
21
|
Tritscher P, Delannoy M, Agrinier N, Charmillon A, Degand N, Dellamonica J, Roger C, Leone M, Scala-Bertola J, Novy E. Assessment of current practice for β-lactam therapeutic drug monitoring in French ICUs in 2021: a nationwide cross-sectional survey. J Antimicrob Chemother 2022; 77:2650-2657. [PMID: 36059108 DOI: 10.1093/jac/dkac291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current guidelines and literature support the use of therapeutic drug monitoring (TDM) to optimize β-lactam treatment in adult ICU patients. OBJECTIVES To describe the current practice of β-lactam monitoring in French ICUs. METHODS A nationwide cross-sectional survey was conducted from February 2021 to July 2021 utilizing an online questionnaire that was sent as an email link to ICU specialists (one questionnaire per ICU). RESULTS Overall, 119 of 221 (53.8%) French ICUs participated. Eighty-seven (75%) respondents reported having access to β-lactam TDM, including 52 (59.8%) with on-site access. β-Lactam concentrations were available in 24-48 h and after 48 h for 36 (41.4%) and 26 (29.9%) respondents, respectively. Most respondents (n = 61; 70.1%) reported not knowing whether the β-lactam concentrations in the TDM results were expressed as unbound fractions or total concentrations. The 100% unbound fraction of the β-lactam above the MIC was the most frequent pharmacokinetic and pharmacodynamic target used (n = 62; 73.0%). CONCLUSIONS Despite the publication of international guidelines, β-lactam TDM is not optimally used in French ICUs. The two major barriers are β-lactam TDM interpretation and the required time for results.
Collapse
Affiliation(s)
- Perrine Tritscher
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France
| | - Matthieu Delannoy
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France
| | - Nelly Agrinier
- Université de Lorraine, APEMAC, F-54000 Nancy, France.,CHRU-Nancy, INSERM, Université de Lorraine, CIC, Épidémiologie Clinique, F-54000 Nancy, France
| | - Alexandre Charmillon
- Université de Lorraine, CHRU-Nancy, Service de maladies infectieuses, coordonnateur équipe transversale en infectiologie, F-54000 Nancy, France
| | - Nicolas Degand
- Centre Hospitalier d'Antibes Juan les Pins, Service de Biologie, F-06600 Antibes, France
| | - Jean Dellamonica
- Université de Nice Cote d'Azur, CHU de Nice, Service de médecine intensive et réanimation, F-06202 Nice, France.,UR2CA Unité de Recherche Clinique Côte d'Azur, Université Cote d'Azur, F-06202 Nice, France
| | - Claire Roger
- CHU Nîmes, Service des Réanimations, Pôle Anesthésie Réanimation Douleur Urgence, F-30000 Nîmes, France.,UR UM 103 IMAGINE, Université de Montpellier, F-34090 Montpellier, France
| | - Marc Leone
- Aix Marseille Université, APHM, Hôpital Nord, Service d'anesthésie et de Réanimation, F-13015 Marseille, France
| | - Julien Scala-Bertola
- Université de Lorraine, CHRU-Nancy, Service de pharmacologie Clinique et toxicologie, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Emmanuel Novy
- Université de Lorraine, CHRU-Nancy, Service d'anesthésie-réanimation et médecine péri-opératoire Brabois Adulte, F-54000 Nancy, France.,Université de Lorraine, SIMPA, F-54000 Nancy, France
| |
Collapse
|
22
|
Bankar NJ, Ugemuge S, Ambad RS, Hawale DV, Timilsina DR. Implementation of Antimicrobial Stewardship in the Healthcare Setting. Cureus 2022; 14:e26664. [PMID: 35949742 PMCID: PMC9357433 DOI: 10.7759/cureus.26664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious problem that poses an imminent threat to patient safety. But drug-resistant bacteria can be prevented from spreading in hospital facilities by implementing effective antimicrobial stewardship practices. Antimicrobial stewardship programs are a set of measures taken by an organization to optimize antimicrobial use, improve patient outcomes, reduce AMR and healthcare-associated infections, and save healthcare costs. Healthcare facilities should have a defined antimicrobial stewardship policy in place that is available to all stakeholders. The policy should be evidence-based, regularly updated, and communicated clearly both verbally and through visual means such as posters. All staff should be trained on the proper use of antimicrobials as well as how to report misuse. Antibiotic stewardship measures include: educating and screening patients, monitoring, updating policies, limiting the use of high-risk medications, developing and improving hand hygiene practices, tracing the path of each medication, using computerized alert probes, using computerized medication records, educating staff, and creating the culture of prevention. There are several ways that antimicrobial stewardship practices can be implemented in the healthcare setting, including limiting the use of antibiotics and promoting healthy behaviors. With these strategies in place, infections can be prevented from occurring in the first place.
Collapse
|
23
|
Sjövall F, Edström M, Walther S, Hanberger H. A nationwide evaluation of antibiotics consumption in Swedish intensive care units. Infect Dis (Lond) 2022; 54:713-721. [PMID: 35638173 DOI: 10.1080/23744235.2022.2081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Around 70% of all ICU patients are treated with antibiotics whereas up to 30% are suggested as unnecessary. Measuring antibiotic consumption is a prerequisite to improving its use and the purpose of the present investigation was to explore the use of antibiotics in Swedish ICUs. MATERIAL AND METHODS Daily Defined Doses (DDDs) of antimicrobials delivered to Swedish ICUs, 2016-2018, were retrieved from Swedish pharmacies. From the Swedish Intensive Care Registry, we extracted data on a number of patient admissions, occupied bed days and Simplified Acute Physiology Score (SAPS)3. RESULTS There was a similar annual rate of total DDDs per admission of 3.7, 3.5, 3.8 and total DDDs per 100 occupied bed days of 111, 111, and 115 but with an approximately 6-fold difference of DDDs per occupied bed days (61-366) between the ICUs. The most frequently used antibiotics were isoxazolyl penicillins (J01CF), penicillins with betalactamase-inhibitors, mainly piperacillin/tazobactam (J01CR), 3rd and 4th generation cephalosporins (J01DD + DE) and carbapenems (J01DH). Together these four classes accounted for a median of 52% of all antibiotic use. The use of carbapenems had a moderate positive correlation with the mean SAPS3 score (r = 0.6, p = .01). The use of other broad-spectrum antibiotics showed no such correlation. CONCLUSION Overall antibiotic use remained similar in Swedish ICUs during the years 2016-2018. Broad-spectrum antibiotics accounted for 50% of all DDDs but with a large inter-ICU variation which only partly can be explained by differences in patient case mix and microbial resistance. Presumably, it also reflects varying local prescribing practices.
Collapse
Affiliation(s)
- Fredrik Sjövall
- Intensive and Perioperative Care, Skane University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Morgan Edström
- Department of Clinical Pharmacology, Region Östergötland, Linköping, Sweden
| | - Sten Walther
- Department of Cardio-thoracic and vascular surgery, Linköping University, Linköping, Sweden
| | - Håkan Hanberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Richter DC, Heininger A, Chiriac U, Frey OR, Rau H, Fuchs T, Röhr AC, Brinkmann A, Weigand MA. Antibiotic Stewardship and Therapeutic Drug Monitoring of β-Lactam Antibiotics: Is There a Link? An Opinion Paper. Ther Drug Monit 2022; 44:103-111. [PMID: 34857694 DOI: 10.1097/ftd.0000000000000949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE In critically ill patients, changes in the pharmacokinetics (PK) of β-lactams can lead to significant variations in serum concentrations, with possibly detrimental effects on outcomes. The utilization of individually calculated doses, extended infusion regimen, and therapeutic drug monitoring (TDM)-guided dose adjustments can mitigate the PK changes and help to achieve and attain an individual PK target. METHODS We reviewed relevant literature from 2004 to 2021 using 4 search engines (PubMed, Web of Science, Scopus, and Google Scholar). Unpublished clinical data were also examined. RESULTS TDM-guided, individualized dosing strategies facilitated PK target attainment and improved patient outcomes. TDM-guided therapy is a core concept of individualized dosing that increases PK target attainment and identifies possible toxic β-lactam concentrations. CONCLUSIONS Individualized dosing and TDM facilitate the rational use of β-lactams and are integral for antibiotic stewardship interventions in critical care, affording the optimal exposure of both pathogen and drugs, along with enhanced treatment efficacy and reduced emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniel C Richter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg
| | - Alexandra Heininger
- Department of Infectious Diseases and Hygiene, Mannheim University Hospital, Mannheim
| | - Ute Chiriac
- Department of Pharmacy, Heidelberg University Hospital, Heidelberg; and
| | | | - Heike Rau
- Departments of Clinical Pharmacy, and
| | - Thomas Fuchs
- Anesthesiology, Heidenheim Hospital, Heidenheim, Germany
| | | | | | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg
| |
Collapse
|
25
|
Advances in clinical antibiotic testing. Adv Clin Chem 2022; 110:73-116. [DOI: 10.1016/bs.acc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|