1
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Manora L, Borlongan CV, Garbuzova-Davis S. Cellular and Noncellular Approaches for Repairing the Damaged Blood-CNS-Barrier in Amyotrophic Lateral Sclerosis. Cells 2024; 13:435. [PMID: 38474399 PMCID: PMC10931261 DOI: 10.3390/cells13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Numerous reports have demonstrated the breakdown of the blood-CNS barrier (B-CNS-B) in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Re-establishing barrier integrity in the CNS is critical to prevent further motor neuron degeneration from harmful components in systemic circulation. Potential therapeutic strategies for repairing the B-CNS-B may be achieved by the replacement of damaged endothelial cells (ECs) via stem cell administration or enhancement of endogenous EC survival through the delivery of bioactive particles secreted by stem cells. These cellular and noncellular approaches are thoroughly discussed in the present review. Specific attention is given to certain stem cell types for EC replacement. Also, various nanoparticles secreted by stem cells as well as other biomolecules are elucidated as promising agents for endogenous EC repair. Although the noted in vitro and in vivo studies show the feasibility of the proposed therapeutic approaches to the repair of the B-CNS-B in ALS, further investigation is needed prior to clinical transition.
Collapse
Affiliation(s)
- Larai Manora
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
| | - Cesario V. Borlongan
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA; (L.M.); (C.V.B.)
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
4
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
5
|
Appelt PA, Comella K, de Souza LAPS, Luvizutto GJ. Effect of stem cell treatment on functional recovery of spinocerebellar ataxia: systematic review and meta-analysis. CEREBELLUM & ATAXIAS 2021; 8:8. [PMID: 33632326 PMCID: PMC7905903 DOI: 10.1186/s40673-021-00130-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spinocerebellar ataxia is a hereditary neurodegenerative disease characterized by changes in balance, locomotion and motor coordination. Stem cell therapies are currently being investigated as an alternative to delay the evolution of the disease, and some experimental studies have investigated the effect of stem cell treatment on spinocerebellar ataxia. OBJECTIVES The aim of this review was to investigate whether the application of stem cells produced an effect on functional recovery in individuals with spinocerebellar ataxia. METHODS The studies included in this review investigated the efficacy and safety of a protocol for the application of mesenchymal stem cells extracted from umbilical cord and adipose tissue. Two studies used intrathecal route for application and one study used intravenous route. RESULTS Studies have shown clinical improvement in the scores of the ICARS (International Cooperative Ataxia Rating Scale), ADL (Activities of Daily Living Scale), BBS (Berg Balance Scale) and SARA (Scale for the Assessment and Rating of Ataxia), but lacked statistical significance. CONCLUSIONS There was low evidence for recommending stem cell therapy in individuals with spinocerebellar ataxia, and no statistical difference was observed for improving functional recovery of patients. Further studies are needed with different designs, largest sample sizes and placebo control, to fully understand anticipated outcomes of cellular therapy for spinocerebellar ataxia.
Collapse
Affiliation(s)
- Pablo Andrei Appelt
- Master student in Physical Therapy of Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Kristin Comella
- Chief Scientific Officer of US Stem Cell Clinic, Weston, Florida, USA
| | | | - Gustavo José Luvizutto
- Professor of Applied Physical Therapy Department of Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Vieira S, Strymecka P, Stanaszek L, Silva-Correia J, Drela K, Fiedorowicz M, Malysz-Cymborska I, Rogujski P, Janowski M, Reis RL, Lukomska B, Walczak P, Oliveira JM. Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. J Mater Chem B 2020; 8:5928-5937. [DOI: 10.1039/d0tb00877j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mn-Based gellan gum hydrogels for cell delivery and real-time tracking on image-guided neuro-procedures.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- AvePark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- 4805-017 Barco
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
| | - Paulina Strymecka
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Luiza Stanaszek
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- AvePark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- 4805-017 Barco
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
| | - Katarzyna Drela
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Izabela Malysz-Cymborska
- Department of Neurology and Neurosurgery, School of Medicine
- Collegium Medicum
- University of Warmia and Mazury
- Olsztyn
- Poland
| | - Piotr Rogujski
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Miroslaw Janowski
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- AvePark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- 4805-017 Barco
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
| | - Barbara Lukomska
- NeuroRepair Department
- Mossakowski Medical Research Centre
- Polish Academy of Sciences
- Warsaw
- Poland
| | - Piotr Walczak
- Department of Neurology and Neurosurgery, School of Medicine
- Collegium Medicum
- University of Warmia and Mazury
- Olsztyn
- Poland
| | - J. Miguel Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- AvePark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- 4805-017 Barco
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
| |
Collapse
|
7
|
Li M, Wang Y, Zhang J, Cao Z, Wang S, Zheng W, Li Q, Zheng T, Wang X, Xu Q, Chen Z. Culture of pyramidal neural precursors, neural stem cells, and fibroblasts on various biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2168-2186. [DOI: 10.1080/09205063.2018.1528520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Ying Wang
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jidi Zhang
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zheng Cao
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shuo Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wei Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qunyuan Xu
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Nabavi SM, Arab L, Jarooghi N, Bolurieh T, Abbasi F, Mardpour S, Azimyian V, Moeininia F, Maroufizadeh S, Sanjari L, Hosseini SE, Aghdami N. Safety, Feasibility of Intravenous and Intrathecal Injection of Autologous Bone Marrow Derived Mesenchymal Stromal Cells in Patients with Amyotrophic Lateral Sclerosis: An Open Label Phase I Clinical Trial. CELL JOURNAL 2018; 20:592-598. [PMID: 30124008 PMCID: PMC6099146 DOI: 10.22074/cellj.2019.5370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is the most severe disorder within the spectrum of motor neuron diseases
(MND) that has no effective treatment and a progressively fatal outcome. We have conducted two clinical trials to assess the
safety and feasibility of intravenous (IV) and intrathecal (IT) injections of bone marrow derived mesenchymal stromal cells
(BM-MSCs) in patients with ALS.
Materials and Methods This is an interventional/experimental study. We enrolled 14 patients that met the following inclusion
criteria: definitive diagnosis of sporadic ALS, ALS Functional Rating Scale (ALS-FRS) ≥24, and ≥40% predicted forced vital
capacity (FVC). All patients underwent bone marrow (BM) aspiration to obtain an adequate sample for cell isolation and
culture. Patients in group 1 (n=6) received an IV and patients in group 2 (n=8) received an IT injection of the cell suspension. All
patients in both groups were followed at 24 hours and 2, 4, 6, and 12 months after the injection with ALS-FRS, FVC, laboratory
tests, check list of side effects and brain/spinal cord magnetic resonance imaging (MRI). In each group, one patient was lost to
follow up one month after cell injection and one patient from IV group died due to severe respiratory insufficiency and infection.
Results During the follow up there were no reports of adverse events in terms of clinical and laboratory assessments.
In MRI, there was not any new abnormal finding. The ALS-FRS score and FVC percentage significantly reduced in all
patients from both groups.
Conclusion This study has shown that IV and IT transplantation of BM-derived stromal cells is safe and feasible (Registration
numbers: NCT01759797 and NCT01771640).
Collapse
Affiliation(s)
- Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Arab
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Neda Jarooghi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Abbasi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajihe Azimyian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Moeininia
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Maroufizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Medicine, ACECR, Tehran, Iran
| | - Leila Sanjari
- Intensive Care Unit, Mostafa Khomeini Hospital, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| |
Collapse
|
9
|
Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother 2017; 91:693-706. [DOI: 10.1016/j.biopha.2017.04.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
|
10
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|
11
|
Singh S, Srivastava A, Srivastava P, Dhuriya YK, Pandey A, Kumar D, Rajpurohit CS. Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Front Mol Biosci 2016; 3:72. [PMID: 27878120 PMCID: PMC5099954 DOI: 10.3389/fmolb.2016.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration and neurodegenerative disorders have been a global health issue affecting the aging population worldwide. Recent advances in stem cell biology have changed the current face of neurodegenerative disease modeling, diagnosis, and transplantation therapeutics. Stem cells also serve the purpose of a simple in-vitro tool for screening therapeutic drugs and chemicals. We present the application of stem cells and induced pluripotent stem cells (iPSCs) in the field of neurodegeneration and address the issues of diagnosis, modeling, and therapeutic transplantation strategies for the most prevalent neurodegenerative disorders. We have discussed the progress made in the last decade and have largely focused on the various applications of stem cells in the neurodegenerative research arena.
Collapse
Affiliation(s)
- Shripriya Singh
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Akriti Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Pranay Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Yogesh K. Dhuriya
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Ankita Pandey
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Dipak Kumar
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Chetan S. Rajpurohit
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| |
Collapse
|
12
|
Mathis S, Couratier P, Julian A, Vallat JM, Corcia P, Le Masson G. Management and therapeutic perspectives in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 17:263-276. [DOI: 10.1080/14737175.2016.1227705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| | - Philippe Couratier
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | - Adrien Julian
- Department of Neurology, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, Centre de Référence ‘neuropathies périphériques rares’, University Hospital of Limoges, Limoges, France
| | - Philippe Corcia
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Tours, Tours, France
| | - Gwendal Le Masson
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| |
Collapse
|