1
|
Shi DL. RNA-Binding Proteins as Critical Post-Transcriptional Regulators of Cardiac Regeneration. Int J Mol Sci 2023; 24:12004. [PMID: 37569379 PMCID: PMC10418649 DOI: 10.3390/ijms241512004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Myocardial injury causes death to cardiomyocytes and leads to heart failure. The adult mammalian heart has very limited regenerative capacity. However, the heart from early postnatal mammals and from adult lower vertebrates can fully regenerate after apical resection or myocardial infarction. Thus, it is of particular interest to decipher the mechanism underlying cardiac regeneration that preserves heart structure and function. RNA-binding proteins, as key regulators of post-transcriptional gene expression to coordinate cell differentiation and maintain tissue homeostasis, display dynamic expression in fetal and adult hearts. Accumulating evidence has demonstrated their importance for the survival and proliferation of cardiomyocytes following neonatal and postnatal cardiac injury. Functional studies suggest that RNA-binding proteins relay damage-stimulated cell extrinsic or intrinsic signals to regulate heart regenerative capacity by reprogramming multiple molecular and cellular processes, such as global protein synthesis, metabolic changes, hypertrophic growth, and cellular plasticity. Since manipulating the activity of RNA-binding proteins can improve the formation of new cardiomyocytes and extend the window of the cardiac regenerative capacity in mammals, they are potential targets of therapeutic interventions for cardiovascular disease. This review discusses our evolving understanding of RNA-binding proteins in regulating cardiac repair and regeneration, with the aim to identify important open questions that merit further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Laboratory of Developmental Biology (CNRS-UMR7622), Institute de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
2
|
Wang M, Ge J, Ma X, Su S, Tian C, Li J, Yu F, Li H, Song C, Gao J, Xu P, Tang Y, Xu G. Exploration of the regulatory mechanisms of regeneration, anti-oxidation, anti-aging and the immune response at the post-molt stage of Eriocheir sinensis. Front Physiol 2022; 13:948511. [PMID: 36237529 PMCID: PMC9552667 DOI: 10.3389/fphys.2022.948511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Eriocheir sinensis is widely appreciated by the surrounding population due to its culinary delicacy and rich nutrients. The E. sinensis breeding industry is very prosperous and molting is one of the important growth characteristics. Research on the regulation of molting in E. sinensis is still in the initial stages. There is currently no relevant information on the regulatory mechanisms of heart development following molting. Comparative transcriptome analysis was used to study developmental regulation mechanisms in the heart of E. sinensis at the post-molt and inter-molt stages. The results indicated that many regulatory pathways and genes involved in regeneration, anti-oxidation, anti-aging and the immune response were significantly upregulated after molting in E. sinensis. Aside from cardiac development, the differentially expressed genes (DEGs) were relevant to myocardial movement and neuronal signal transduction. DEGs were also related to the regulation of glutathione homeostasis and biological rhythms in regard to anti-oxidation and anti-aging, and to the regulation of immune cell development and the immune response. This study provides a theoretical framework for understanding the regulation of molting in E. sinensis and in other economically important crustaceans.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Can Tian
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Yongkai Tang, ; Gangchun Xu,
| |
Collapse
|
3
|
Qin X, Fei J, Duan Y, Ceylan AF, Zhang F, Ren J. Beclin1 haploinsufficiency compromises mesenchymal stem cell-offered cardioprotection against myocardial infarction. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:21. [PMID: 35650374 PMCID: PMC9160171 DOI: 10.1186/s13619-022-00121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs)-based therapy has displayed some promises in ischemia heart diseases although its efficacy may be affected by changes in surrounding environments. This study evaluated the role of autophagy insufficiency using Beclin1 haploinsufficiency (BECN+/-) on intra-myocardial MSC transplantation-evoked effect against myocardial infarction. Donor MSCs from C57BL/6 mice were labelled with cell-tracker CM Dil and were delivered into LV free wall adjacent to infarct region in wild-type (WT) and BECN+/- recipient mice following ligation of left main coronary artery (MI-MSCs). Ten days following MI, myocardial function was assessed using echocardiography. Cardiomyocyte contractility and intracellular Ca2+ were monitored using cardiomyocytes from the area-at-risk adjacent to infarct. CM-Dil labeled cells were tracked in MSCs recipient mice using fluorescence microscopy. Lectin, Masson trichrome staining and Western blot analysis were employed to determine cardiomyocyte area, scar fibrosis, apoptosis and inflammation. MI insult triggered scar fibrosis, LV chamber dilation, decreased fractional shortening, ejection fraction, cardiomyocyte shortening, maximal velocity of shortening and relengthening as well as prolonged relengthening, which were abrogated or attenuated by MSCs therapy in WT but not BECN+/- mice. MI decreased intracellular Ca2+ rise and decay in response to electrical stimuli without affecting resting intracellular Ca2+, which were reconciled by MSCs in WT but not BECN+/- mice. MSCs further attenuated MI-induced mitochondrial ultrastructural injury, apoptosis, inflammation and autophagy defects in peri-infarct area in WT but not BECN+/- mice. Collectively, our results suggested that autophagy insufficiency dampened in MSCs-elicited cardioprotection associated with dampened apoptosis and inflammation.
Collapse
Affiliation(s)
- Xing Qin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Juanjuan Fei
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Asli F Ceylan
- Department of Medical Pharmacology, Ankara Yildirim Beyazit University, Faculty of Medicine, Bilkent, Ankara, Turkey
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|