1
|
Akoonjee A, Rampadarath A, Aruwa CE, Ajiboye TA, Ajao AAN, Sabiu S. Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites 2022; 12:1013. [PMID: 36355096 PMCID: PMC9692680 DOI: 10.3390/metabo12111013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Abstract
The medicinal herb Aspalathus linearis (rooibos) is globally recognized in type-2 diabetes mellitus (T2DM) treatment due to its known and distinctive compounds. This work utilized network pharmacology (NP) coupled with molecular dynamics simulation in gaining new insight into the anti-diabetic molecular mechanism of action of rooibos teas. It looked at the interactions between rooibos constituents with various relevant protein receptors and signaling routes associated with T2DM progression. The initial analysis revealed 197 intersecting gene targets and 13 bioactive rooibos constituents linked to T2DM. The interactions between proteins and compounds to the target matrix were generated with the Cystoscope platform and STRING database. These analyses revealed intersecting nodes active in T2DM and hypoxia-inducible factor 1 (HIF-1) as an integral receptors target. In addition, KEGG analysis identified 11 other pathways besides the hub HIF-1 signaling route which may also be targeted in T2DM progression. In final molecular docking and dynamics simulation analysis, a significant binding affinity was confirmed for key compound-protein matrices. As such, the identified rooibos moieties could serve as putative drug candidates for T2DM control and therapy. This study shows rooibos constituents' interaction with T2DM-linked signaling pathways and target receptors and proposes vitexin, esculin and isovitexin as well as apigenin and kaempferol as respective pharmacologically active rooibos compounds for the modulation of EGFR and IGF1R in the HIF-1 signaling pathway to maintain normal homeostasis and function of the pancreas and pancreatic β-cells in diabetics.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Athika Rampadarath
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | | - Abdulwakeel Ayokun-nun Ajao
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
2
|
Castillo-Salazar M, Sánchez-Muñoz F, Springall del Villar R, Navarrete-Vázquez G, Hernández-DiazCouder A, Mojica-Cardoso C, García-Jiménez S, Toledano-Jaimes C, Bernal-Fernández G. Nitazoxanide Exerts Immunomodulatory Effects on Peripheral Blood Mononuclear Cells from Type 2 Diabetes Patients. Biomolecules 2021; 11:1817. [PMID: 34944461 PMCID: PMC8699442 DOI: 10.3390/biom11121817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a low-grade inflammatory condition with abnormalities in the immune response mediated by T lymphocytes and macrophages. Drug repositioning for immunomodulatory molecules is an attractive proposal for treating T2D. Nitazoxanide (NTZ) is a broad-spectrum drug with promising immunomodulatory effects. Thus, we investigated the immunomodulatory effect of NTZ on peripheral blood mononuclear cells (PBMCs) from patients with T2D. METHODS Fifty patients with T2D were selected, and the proliferative response of T lymphocytes and the M1/M2 ratio of macrophages post cell culture were evaluated by flow cytometry, as well as measuring the concentration of cytokines by ELISA and the relative expression of microRNAs (miRNAs) related to the immune response by real-time PCR. RESULTS NTZ exerts an inhibitory effect on the cell proliferation of T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies without modifying cell viability, and significant decreases in the supernatant concentrations of interleukin (IL)-1β, IL-2, IL-6, IL-10, and IL-12. Furthermore, NTZ negatively regulates the relative expression of miR-155-5p without changes in miR-146a-5p. The M1/M2 ratio of monocytes/macrophages decreased the M1 and increased the M2 subpopulation by NTZ. CONCLUSIONS Our results suggest that NTZ exerts immunomodulatory effects on PBMCs from T2D patients, and shows potential alternative therapeutic benefits.
Collapse
Affiliation(s)
- Mauricio Castillo-Salazar
- Pharmacy Faculty, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.C.-S.); (G.N.-V.); (S.G.-J.); (C.T.-J.)
| | - Fausto Sánchez-Muñoz
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico; (F.S.-M.); (R.S.d.V.); (A.H.-D.)
| | - Rashidi Springall del Villar
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico; (F.S.-M.); (R.S.d.V.); (A.H.-D.)
| | - Gabriel Navarrete-Vázquez
- Pharmacy Faculty, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.C.-S.); (G.N.-V.); (S.G.-J.); (C.T.-J.)
| | - Adrián Hernández-DiazCouder
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico; (F.S.-M.); (R.S.d.V.); (A.H.-D.)
| | | | - Sara García-Jiménez
- Pharmacy Faculty, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.C.-S.); (G.N.-V.); (S.G.-J.); (C.T.-J.)
| | - Cairo Toledano-Jaimes
- Pharmacy Faculty, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.C.-S.); (G.N.-V.); (S.G.-J.); (C.T.-J.)
| | - Germán Bernal-Fernández
- Pharmacy Faculty, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.C.-S.); (G.N.-V.); (S.G.-J.); (C.T.-J.)
| |
Collapse
|
3
|
Tong ZWM, Grant E, Gras S, Wu M, Smith C, Barrett HL, Gallo LA, Short KR. The role of T-cell immunity in COVID-19 severity amongst people living with type II diabetes. FEBS J 2021; 288:5042-5054. [PMID: 34216102 PMCID: PMC8420365 DOI: 10.1111/febs.16105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/05/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.
Collapse
Affiliation(s)
- Zhen Wei Marcus Tong
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| | - Emma Grant
- La Trobe University ‐ La Trobe Institute for Molecular Science (LIMS)MelbourneAustralia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Stephanie Gras
- La Trobe University ‐ La Trobe Institute for Molecular Science (LIMS)MelbourneAustralia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Melanie Wu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute ‐ QIMR Berghofer Centre for Immunotherapy and Vaccine Development BrisbaneAustralia
| | - Helen L. Barrett
- Department of EndocrinologyMater HealthBrisbaneAustralia
- Mater Research InstituteThe University of QueenslandBrisbaneAustralia
| | - Linda A. Gallo
- School of Biomedical SciencesThe University of QueenslandSt LuciaAustralia
| | - Kirsty R. Short
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
4
|
Oh KK, Adnan M, Cho DH. Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. PLoS One 2020; 15:e0240873. [PMID: 33382706 PMCID: PMC7774932 DOI: 10.1371/journal.pone.0240873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sorghum bicolor (SB) is rich in protective phytoconstituents with health benefits and regarded as a promising source of natural anti-diabetic substance. However, its comprehensive bioactive compound(s) and mechanism(s) against type-2 diabetes mellitus (T2DM) have not been exposed. Hence, we implemented network pharmacology to identify its key compounds and mechanism(s) against T2DM. METHODS Compounds in SB were explored through GC-MS and screened by Lipinski's rule. Genes associated with the selected compounds or T2DM were extracted from public databases, and the overlapping genes between SB-compound related genes and T2DM target genes were identified using Venn diagram. Then, the networking between selected compounds and overlapping genes was constructed, visualized, and analyzed by RStudio. Finally, affinity between compounds and genes was evaluated via molecular docking. RESULTS GC-MS analysis of SB detected a total of 20 compounds which were accepted by the Lipinski's rule. A total number of 16 compounds-related genes and T2DM-related genes (4,763) were identified, and 81 overlapping genes between them were selected. Gene set enrichment analysis exhibited that the mechanisms of SB against T2DM were associated with 12 signaling pathways, and the key mechanism might be to control blood glucose level by activating PPAR signaling pathway. Furthermore, the highest affinities were noted between four main compounds and six genes (FABP3-Propyleneglyco monoleate, FABP4-25-Oxo-27-norcholesterol, NR1H3-Campesterol, PPARA-β-sitosterol, PPARD-β-sitosterol, and PPARG-β-sitosterol). CONCLUSION Our study overall suggests that the four key compounds detected in SB might ameliorate T2DM severity by activating the PPAR signaling pathway.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Mahlangu T, Dludla PV, Nyambuya TM, Mxinwa V, Mazibuko-Mbeje SE, Cirilli I, Marcheggiani F, Tiano L, Louw J, Nkambule BB. A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine 2019; 126:154892. [PMID: 31704479 DOI: 10.1016/j.cyto.2019.154892] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/09/2019] [Accepted: 10/14/2019] [Indexed: 12/24/2022]
Abstract
The T-helper (Th1/Th2) paradigm is widely studied for its role in modulating an adaptive immune response, especially in relation to the onset of various autoimmune diseases. In fact, emerging evidence clearly shows an inverse relationship between Th1/Th2 cytokines and the development of type 2 diabetes (T2D) complications, which is accelerated by an exacerbated inflammatory state. Here, relevant studies reporting on any association between the levels of Th1/Th2 cytokines and the development of T2D were retrieved through major electronic databases such as The Cochrane Library, Embase and PubMed. Extracted evidence which mostly involved animal models and human subjects with T2D or metabolic syndrome was assessed for quality and risk of bias using the Downs and Black checklist and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Results strongly correlated raised Th1/Th2 cytokines such as interferon-gamma (IFN-γ)/interleukin (IL)-5 and IL-2/IL-5 ratios to T2D, and this was positively linked with the other complications including retinopathy and cardiovascular complications. Further, logistic regression analysis demonstrated that the Th1/Th2 ratios were significantly associated with impaired glucose homeostasis, abnormally enhanced lipid profiles, and insulin resistance. Although more studies making use of a larger sample size are required, current data suggest that optimal modulation of Th1/Th2 cytokines may be an important aspect in the management of T2D and its associated complications.
Collapse
Affiliation(s)
- Thabsile Mahlangu
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Tawanda M Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia.
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
6
|
Mxinwa V, Nyambuya TM, Dludla PV, Nkambule BB. The role of innate lymphoid cells and T helper cell activation in type 2 diabetic patients: a protocol for a systematic review and meta-analysis. Syst Rev 2019; 8:229. [PMID: 31481104 PMCID: PMC6724242 DOI: 10.1186/s13643-019-1144-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Persistent levels of low-grade inflammation and T lymphocyte activation are associated with insulin resistance and type 2 diabetes that eventually lead to the development of cardiovascular diseases. Interestingly, increasing studies report on an emerging role of innate lymphoid cells in the development of both type 2 diabetes and cardiovascular disease. This systematic review will provide a comprehensive synthesis of available studies reporting on the role of innate lymphoid cells and associated T helper cell function in type 2 diabetic patients. It will further provide insight into the association of innate lymphoid cell activation and cardiovascular risk in adults living with type 2 diabetes. METHODS This systematic review protocol has been prepared in accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 guidelines. The protocol has been registered with PROSPERO (CRD42018106159). This systematic review and meta-analysis will include published randomised clinical trials, observational studies, and case-control studies. We will also include grey literature. A search strategy will be developed with the help of subject librarian using Medical Subject Heading (MeSH) words for MEDLINE. This will then be adapted for the Embase database. Two independent reviewers VM and BBN will screen all studies using prespecified inclusion and exclusion criteria. The Downs and Black checklist will be used to assess the quality of individual studies. Predefined relevant data items will be extracted using sheets, and all study tables will be created using Review Manager V.5.3. The Grading of Recommendations Assessment, Development and Evaluation approach will be used to assess the strength of evidence. ETHICS AND DISSEMINATION The review will include publicly available data. The findings of this review will be disseminated through publications.
Collapse
Affiliation(s)
- Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Phiwayinkosi V. Dludla
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-induced inflammation and insulin resistance: A mini-review on T-cells. Metabol Open 2019; 3:100015. [PMID: 32812921 PMCID: PMC7424835 DOI: 10.1016/j.metop.2019.100015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive lipid accumulation in an obese state is linked with activation and release of detrimental cytokines and chemokines that promote metabolic dysregulation. In fact, emerging experimental evidence shows that abnormal modulation of T-cells in an obese state correlates with the development and progression of insulin resistance. Importantly, the evolving concept linking insulin resistance with impaired immunological mechanisms such as T-cell responses provides new prospects for understanding the role of inflammation in moderating metabolic complications.
Collapse
Affiliation(s)
- Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Dymond T. Putting Together the Pieces: A Metabolic Model of Viral Infection and the Subsequent Development of Asthma. Viral Immunol 2019; 32:239-243. [PMID: 31149895 DOI: 10.1089/vim.2019.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the prevalence of asthma and atopic disease continues to rise over the past half a century, the exact mechanism behind this remains elusive. Of late, the role of metabolic dysfunction in disease is becoming more clearly classified. The part of metabolic dysfunction in respiratory viral infections is studied, which reopens the debate in the role of infection on asthma development in childhood. During infection, there is a rapid shift in nutrients available for immune cells to metabolize. Exploring these metabolic changes and the resulting immune cell function, a striking pattern emerges. In asthma development following viral infection, it is proposed there is a transient state of impaired glucose tolerance resulting in a sudden increase in glucose for lymphocytes to metabolize, triggering them to enter a state of increased aerobic glycolysis. Reviewing this outcome, along with previous work, a new working metabolic model of asthma development is proposed by suggesting a new step between a healthy immune system and asthma.
Collapse
|