1
|
Silambarasan R, Kasthuri Nair A, Maniyan G, Vijaya R, Nair RV, Hareendran Nair J, Nishanth Kumar S, Sasidharan S. Exploring the molecular mechanism of Dioscorea alata L. for the treatment of menstrual disorders using network pharmacology and molecular docking. Heliyon 2025; 11:e42582. [PMID: 40028534 PMCID: PMC11870275 DOI: 10.1016/j.heliyon.2025.e42582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Menstrual disorders (MDs), including premenstrual syndrome, amenorrhea, and dysmenorrhea, affect women globally. Dioscorea alata L., a traditional yam species, has been used medicinally, but its potential in treating MDs remains understudied. This study employs a network pharmacology approach to examine the effects of D. alata's secondary metabolites on MDs via multi-target mechanisms. Compounds were identified from literature and PubChem, while disease-related targets were gathered from GeneCards, DisGeNET, and CTD databases. Swiss target prediction was used to link compounds to targets. A protein-protein interaction (PPI) network was constructed using STRING, and Gene Ontology (GO) and KEGG enrichment analyses were conducted to predict functional pathways. Eighteen bioactive compounds and 120 therapeutic targets specific to MDs were identified. KEGG analysis revealed 20 significant pathways related to menstrual disturbances. Among the 120 targets, TNF α, PPARG, ESR1, and AKT1 were highlighted as key therapeutic targets. Molecular docking showed strong interactions between Daidzein and ESR1, Diosgenin and TNF α, Alatanin and AKT1, and PPARG. The findings suggest that D. alata's bioactive compounds, such as Diosgenin, Daidzein, Genistin, Cycloartane, and Alatanin, could modulate pathways involved in ovarian follicle formation, hormone regulation, estrogen receptor signaling, and the stress-activated MAP kinase pathway. This study provides new insights into the multi-target potential of D. alata for treating menstrual disorders, supporting further investigation and therapeutic development.
Collapse
Affiliation(s)
- Rajendran Silambarasan
- Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, India
| | - A. Kasthuri Nair
- Department of Kayachikitsa, Pankajakasthuri Ayurveda Medical College & PG Centre, Killy, Kattakada, Thiruvananthapuram, Kerala, India
| | - Gomathi Maniyan
- Native Women Food Products Foundation, Research and Development Department, SMIDS Campus, Nagercoil, Tamil Nadu, India
| | - R. Vijaya
- Department of Dravyagunavijnanam, Pankajakasthuri Ayurveda Medical College & P.G. Centre, Killy, Kattakada, Thiruvananthapuram, Kerala, India
| | - Reshma V.R. Nair
- Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, India
| | - J. Hareendran Nair
- Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, India
| | - S. Nishanth Kumar
- Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, India
| | - Shan Sasidharan
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
| |
Collapse
|
2
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
3
|
Hilario-Martínez JC, Huerta A, Amaro-López JC, Alatriste V, De Los Santos MG, Martínez I, Bernès S, Sandoval-Ramírez J, Merino G, Luna F, Fernández-Herrera MA. Stereoselective synthesis of (26R)-26-hydroxydiosgenin and its effect on the regulation of rat ovarian function. Bioorg Chem 2021; 115:105189. [PMID: 34325218 DOI: 10.1016/j.bioorg.2021.105189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The stereoselective cyclization of a C-16 acetylated 22,26-dioxocholestene derivative to give the spirostane E and F rings, under alkaline conditions, yields exclusively the (26R)-26-hydroxydiosgenin. Both experimental and computational data support the formation of a single diastereoisomer. The effect of diosgenin and (26R)-26-hydroxydiosgenin on rat ovary is also investigated.
Collapse
Affiliation(s)
- J Ciciolil Hilario-Martínez
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., Mexico; Facultad de Ciencias Químicas, Laboratorio de Síntesis y Modificación de Productos Naturales, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Aurora Huerta
- Facultad de Ciencias Químicas, Laboratorio de Neuroendocrinología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Julio C Amaro-López
- Facultad de Ciencias Químicas, Laboratorio de Neuroendocrinología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Victorino Alatriste
- Facultad de Ciencias Químicas, Laboratorio de Neuroendocrinología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - María G De Los Santos
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., Mexico
| | - Isabel Martínez
- Facultad de Ciencias Químicas, Laboratorio de Neuroendocrinología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Laboratorio de Síntesis y Modificación de Productos Naturales, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., Mexico
| | - Félix Luna
- Facultad de Ciencias Químicas, Laboratorio de Neuroendocrinología, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - María A Fernández-Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., Mexico.
| |
Collapse
|
4
|
Zhang Z, Yue L, Wang Y, Jiang Y, Xiang L, Cheng Y, Ju D, Chen Y. A circRNA-miRNA-mRNA network plays a role in the protective effect of diosgenin on alveolar bone loss in ovariectomized rats. BMC Complement Med Ther 2020; 20:220. [PMID: 32664914 PMCID: PMC7362493 DOI: 10.1186/s12906-020-03009-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The present study aimed to assess the perturbation in circular RNA (circRNA)/mRNA expression profiles and a circRNA-miRNA-mRNA coexpression network involved in the potential protective effect of diosgenin (DIO) on alveolar bone loss in rats subjected to ovariectomy (OVX). Methods The Wistar rats (female) manipulated with sham operation were classified as the SHAM group and the grouping of OVX rats administered with DIO, estradiol valerate or vehicle for 12 weeks was DIO group, EV group and OVX group respectively. Following treatments, the plasmatic levels of osteocalcin and tumor necrosis factor-alpha and the microstructure of alveolar bone were assayed. Based on microarray analyses, we identified differentially expressed (DE) circRNAs and mRNAs in alveolar bone of rats in both OVX and DIO group. The DE circRNAs and DE mRNAs involved in the bone metabolism pathway validated by RT-qPCR were considered key circRNAs/mRNAs. On the basis of these key circRNAs/mRNAs, we predicted the overlapping relative miRNAs of key circRNAs/mRNAs, and a circRNA-miRNA-mRNA network was built. Results DIO showed an anti-osteopenic effect on the rat alveolar bone loss induced by OVX. In total, we found 10 DE circRNAs (6 downregulated and 4 upregulated) and 614 DE mRNAs (314 downregulated and 300 upregulated) in samples of the DIO group compared with those of the OVX group. However, only one circRNA (rno_circRNA_016717) and seven mRNAs (Sfrp1, Csf1, Il1rl1, Nfatc4, Tnfrsf1a, Pik3c2g, and Wnt9b) were validated by qRT-PCR and therefore considered key circRNA/mRNAs. According to these key circRNA/mRNAs and overlapping predicted miRNAs, a coexpression network was constructed. After network analysis, one circRNA-miRNA-mRNA axis (circRNA_016717/miR-501-5p/Sfrp1) was identified. Conclusion The mechanism of DIO inhibiting alveolar bone loss after OVX is possibly relevant to the simultaneous inhibition of osteogenesis and osteoclastogenesis by mediating the expression of important molecules in the Wnt, PI3K, RANK/RANKL or osteoclastogenic cytokine pathways. The circRNA_016717/miR-501-5p/Sfrp1 axis may play important roles in these processes.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lifeng Yue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanhua Jiang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lihua Xiang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Jiang M, Wang W, Zhang J, Wang C, Bi Y, Li P, Yang S, Li J, Xu YT, Wang T. Protective Effects and Possible Mechanisms of Actions of Bushen Cuyun Recipe on Diminished Ovarian Reserve Induced by Cyclophosphamide in Rats. Front Pharmacol 2020; 11:546. [PMID: 32477106 PMCID: PMC7237638 DOI: 10.3389/fphar.2020.00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Backgrounds Diminished ovarian reserve (DOR) contributes significantly to female infertility. Bushen Cuyun Recipe (BCR, Tradename Yueliang Yin), a product marketed in China, has shown effects in the treatment of female infertility in clinical practices of traditional Chinese medicine (TCM). In this study, we aimed to investigate the chemical compositions of BCR and its efficacy based on scientific evidence and pharmacological mechanisms in DOR treatments. Methods The chemical compositions of BCR were determined by the UHPLC-LTQ-Orbitrap MS method. DOR was induced in a rat model by intraperitoneal injection of cyclophosphamide (CTX) 90 mg/kg once. After the CTX treatment for 14 days, rats were intragastrically administrated deionized water, dehydroepiandrosterone (DHEA), or BCR in low, middle, and high doses for 30 days. Ovarian index, ovarian morphology, follicle number, and anti-Müllerian hormone (AMH) in serum were determined to assess the effects of BCR. To investigate possible action mechanisms, network pharmacological analysis was used to predict possible pathways in the effects of BCR on female infertility. In experimental studies, the contents of hormones in the hypothalamic-pituitary-ovarian axis (HPOA, including estradiol (E2), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH)) and pyroptosis-related proteins, including gasdermin D (GSDMD), caspase-1, and interleukin-18 (IL-18), in ovarian were detected by ELISA, immunofluorescence and Western blot. Results Chemical studies revealed a total 84 components in BCR, which included 43 flavonoids, 13 triterpenoids, 11 phenolic acids, 8 alkaloids, 1 coumarin, 1 anthraquinone, and 7 other components. After treatments with BCR, the ovarian morphology, ovarian index, estrous cycle, growing follicles and corpus luteum from last ovulation, and serum AMH in DOR rats were significantly improved. Network pharmacological analysis suggested that the NOD-like receptor signaling pathway ranked No. 1 among the mechanisms by which BCR affects female infertility. Experimental results demonstrated that the content of serum FSH in DOR rats was significantly decreased and the contents of serum GnRH and E2 were significantly elevated after BCR treatment and that the elevated level of GSDMD, caspase-1, and IL-18 was significantly reversed in BCR-treated rats. Conclusions The chemical compositions of BCR were first identified in the present study. BCR was demonstrated to show protective effects on DOR. The possible mechanisms of BCR on DOR might be mediated by regulating gonadal hormones of the HPOA and protecting granulosa cells in ovary against pyroptosis.
Collapse
Affiliation(s)
- Mei Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yucong Bi
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Song Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Tong Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Sirotkin AV, Alexa R, Alwasel S, Harrath AH. The phytoestrogen, diosgenin, directly stimulates ovarian cell functions in two farm animal species. Domest Anim Endocrinol 2019; 69:35-41. [PMID: 31280024 DOI: 10.1016/j.domaniend.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
The present in vitro study was conducted to examine the direct action of the plant steroidal sapogenin, diosgenin, on basic farm animal ovarian cell functions. As models, we used cultured porcine ovarian granulosa cells, porcine whole follicles, and rabbit ovarian fragments. The effects of diosgenin (0, 1, 10, or 100 μg/mL medium) on the markers of proliferation, cytoplasmic apoptosis, steroid (progesterone: P4, testosterone: T, and estradiol: E2) release, and peptide hormone (insulin-like growth factor I: IGF-I) release were analyzed by quantitative immunocytochemistry and radioimmunoassay. Diosgenin promoted proliferation, apoptosis, and T and E2 release and inhibited P4 output in cultured porcine granulosa cells. Similarly, cultured porcine ovarian follicles showed diosgenin-induced inhibition of P4 and stimulation of T release. In cultured rabbit ovarian fragments, diosgenin stimulated P4 and IGF-I release. This is the first study showing that diosgenin can promote basic ovarian cell functions such as proliferation, apoptosis, and steroid and peptide hormone release. The similar effects of diosgenin on porcine granulosa cells and ovarian follicles suggest that granulosa cells are the primary ovarian target of diosgenin. The contrasting effects of diosgenin on porcine and rabbit ovarian P4 output suggest that diosgenin functions in a species-specific manner. These observations indicate that diosgenin has potential applications for improving female reproduction.
Collapse
Affiliation(s)
- A V Sirotkin
- Department of Zoology and Anthropology, Constantine The Philosopher University in Nitra, 949 74 Nitra, Slovakia; Department of Genetics and Reproduction, Research Institute of Animal Production Nitra, 951 41 Lužianky, Slovakia.
| | - R Alexa
- Department of Zoology and Anthropology, Constantine The Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - S Alwasel
- Zoology Department, College of Science, King Saud University, College of Sciences, Riyadh 11451, Saudi Arabia
| | - A H Harrath
- Zoology Department, College of Science, King Saud University, College of Sciences, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, Zhang Y, Yan W, Zhou S, Li Y, Jin Y, Luo A, Wang S. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 2019; 11:817-832. [PMID: 30674710 PMCID: PMC6366956 DOI: 10.18632/aging.101784] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Aging has been regarded as a treatable condition, and delaying aging could prevent some diseases. Ovarian aging, a special type of organ senescence, is the earliest-aging organ, as ovaries exhibit an accelerated rate of aging with characteristics of gradual declines in ovarian follicle quantity and quality since birth, compared to other organs. Ovarian aging is considered as the pacemaker of female body aging, which drives the aging of multiple organs of the body. Hence, anti-ovarian aging has become a research topic broadly interesting to both biomedical scientists and pharmaceutical industry. A marked progress has been made in exploration of possible anti-ovarian agents or approaches, such as calorie restriction mimetics, antioxidants, autophagy inducers etc., over the past years. This review is attempted to discuss recent advances in the area of anti-ovarian aging pharmacology and to offer new insights into our better understanding of molecular mechanisms underlying ovarian aging, which might be informative for future prevention and treatment of ovarian aging and its related diseases.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingfu Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Kawai T, Richards JS, Shimada M. The Cell Type-Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation-Dependent Mechanism. Endocrinology 2018; 159:2062-2074. [PMID: 29579175 PMCID: PMC5905396 DOI: 10.1210/en.2018-00117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
The luteinizing hormone receptor (LHCGR) is expressed at low levels in mural granulosa cells and cumulus cells of antral follicles and is induced dramatically in granulosa cells but not in cumulus cells by follicle-stimulating hormone (FSH). Therefore, we hypothesized that FSH not only activates transcription factors controlling Lhcgr expression but also alters other events to permit and enhance Lhcgr expression in granulosa cells but not in cumulus cells. In granulosa cells, the level of DNA methylation in the Lhcgr promoter region was significantly decreased by equine chorionic gonadotropin (eCG) in vivo. However, in cumulus cells, hypermethylation of the Lhcgr promoter remained after eCG stimulation. eCG induced estrogen production from testosterone (T) and retinoic acid (RA) synthesis in granulosa cells. When either T or RA in the presence or absence of FSH was added to granulosa cell cultures, the combined treatment with FSH and RA induced demethylation of Lhcgr-promoter region and Lhcgr expression. FSH-dependent RA synthesis was negatively regulated by coculture of granulosa cells with denuded oocytes, suggesting that oocyte-secreted factors downregulate RA production in cumulus cells where Lhcgr expression was not induced. Strikingly, treatment of cultured cumulus-oocyte complexes with a SMAD inhibitor, SB431542, significantly induced RA production, demethylation of Lhcgr-promoter region, and Lhcgr expression in cumulus cells. These results indicate the demethylation of the Lhcgr-promoter region is mediated, at least in part, by RA synthesis and is a key mechanism regulating the cell type-specific differentiation during follicular development.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Correspondence: Masayuki Shimada, PhD, Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan. E-mail:
| |
Collapse
|