1
|
Apio HB, Elegba W, Nunekpeku W, Otu SA, Baguma JK, Alicai T, Danso KE, Bimpong IK, Ogwok E. Effect of gamma irradiation on proliferation and growth of friable embryogenic callus and in vitro nodal cuttings of ugandan cassava genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1414128. [PMID: 39351022 PMCID: PMC11439714 DOI: 10.3389/fpls.2024.1414128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Cassava (Manihot esculenta Crantz) production and productivity in Africa is affected by two viral diseases; cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Induced mutagenesis of totipotent/embryogenic tissues or in vitro plant material can lead to the generation of CMD and/or CBSD tolerant mutants. To massively produce non-chimeric plants timely and with less labor, totipotent cells or tissues are a pre-requisite. This study aimed to determine the effect of gamma radiation on the proliferation and growth of friable embryogenic callus (FEC) and in vitro nodal cuttings respectively. To obtain FEC, 2-6 mm sized leaf lobes of nine cassava genotypes were plated on Murashige and Skoog (MS) basal media supplemented with varying levels (37, 50, 70, 100) μM of picloram for production of organized embryogenic structures (OES). The OES of five cassava genotypes (Alado, CV-60444, NASE 3, NASE 13 and TME 204) were crushed and plated in Gresshoff and Doy (GD) basal media in combination with the amino acid tyrosine in varying concentrations for FEC production. FEC from five cassava genotypes and in vitro nodal cuttings of nine genotypes were irradiated using five different gamma doses (0, 5, 10, 15, 20 and 25 Gy) at a dose rate of 81Gy/hr. The lethal dose (LD)50 was determined using the number of roots produced and flow cytometry was done to determine the ploidy status of plants. The highest production of OES was noted in Alado across varying picloram concentrations, while TME 204 obtained the highest amount of FEC. The irradiated FEC gradually died and by 28 days post irradiation, FEC from all five cassava genotypes were lost. Conversely, the irradiated in vitro nodal cuttings survived and some produced roots, while others produced callus. The LD50 based on number of roots varied from genotype to genotype, but plants remained diploid post-irradiation. Accordingly, the effect of gamma irradiation on Ugandan cassava genotypes (UCGs) was genotype-dependent. This information is foundational for the use of in vitro tissues as target material for cassava mutation breeding.
Collapse
Affiliation(s)
- Hellen B. Apio
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Wilfred Elegba
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Wonder Nunekpeku
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Solomon Ayeboafo Otu
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Julius Karubanga Baguma
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Titus Alicai
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Kenneth Ellis Danso
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
- School of Nuclear and Allied Sciences, University of Ghana, Accra, Ghana
| | - Isaac Kofi Bimpong
- Plant Breeding and Genetics Section, Joint Food and Agricultural Organisation (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Emmanuel Ogwok
- Tissue culture and Transformation Laboratory, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
- Department of Science and Vocational Education, Faculty of Science, Lira University, Lira, Uganda
| |
Collapse
|
2
|
Nowak K, Morończyk J, Wójcik A, Gaj MD. AGL15 Controls the Embryogenic Reprogramming of Somatic Cells in Arabidopsis through the Histone Acetylation-Mediated Repression of the miRNA Biogenesis Genes. Int J Mol Sci 2020; 21:ijms21186733. [PMID: 32937992 PMCID: PMC7554740 DOI: 10.3390/ijms21186733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
The embryogenic transition of somatic cells requires an extensive reprogramming of the cell transcriptome. Relevantly, the extensive modulation of the genes that have a regulatory function, in particular the genes encoding the transcription factors (TFs) and miRNAs, have been indicated as controlling somatic embryogenesis (SE) that is induced in vitro in the somatic cells of plants. Identifying the regulatory relationships between the TFs and miRNAs during SE induction is of central importance for understanding the complex regulatory interplay that fine-tunes a cell transcriptome during the embryogenic transition. Hence, here, we analysed the regulatory relationships between AGL15 (AGAMOUS-LIKE 15) TF and miR156 in an embryogenic culture of Arabidopsis. Both AGL15 and miR156 control SE induction and AGL15 has been reported to target the MIR156 genes in planta. The results showed that AGL15 contributes to the regulation of miR156 in an embryogenic culture at two levels that involve the activation of the MIR156 transcription and the containment of the abundance of mature miR156 by repressing the miRNA biogenesis genes DCL1 (DICER-LIKE1), SERRATE and HEN1 (HUA-ENHANCER1). To repress the miRNA biogenesis genes AGL15 seems to co-operate with the TOPLESS co-repressors (TPL and TPR1-4), which are components of the SIN3/HDAC silencing complex. The impact of TSA (trichostatin A), an inhibitor of the HDAC histone deacetylases, on the expression of the miRNA biogenesis genes together with the ChIP results implies that histone deacetylation is involved in the AGL15-mediated repression of miRNA processing. The results indicate that HDAC6 and HDAC19 histone deacetylases might co-operate with AGL15 in silencing the complex that controls the abundance of miR156 during embryogenic induction. This study provides new evidence about the histone acetylation-mediated control of the miRNA pathways during the embryogenic reprogramming of plant somatic cells and the essential role of AGL15 in this regulatory mechanism.
Collapse
|
3
|
Szczygieł-Sommer A, Gaj MD. The miR396-GRF Regulatory Module Controls the Embryogenic Response in Arabidopsis via an Auxin-Related Pathway. Int J Mol Sci 2019; 20:ijms20205221. [PMID: 31640280 PMCID: PMC6829408 DOI: 10.3390/ijms20205221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, microRNAs have been indicated to control various developmental processes, including somatic embryogenesis (SE), which is triggered in the in vitro cultured somatic cells of plants. Although a transcriptomic analysis has indicated that numerous MIRNAs are differentially expressed in the SE of different plants, the role of specific miRNAs in the embryogenic reprogramming of the somatic cell transcriptome is still poorly understood. In this study, we focused on performing a functional analysis of miR396 in SE given that the transcripts of MIR396 genes and the mature molecules of miR396 were found to be increased during an SE culture of Arabidopsis. In terms of miR396 in embryogenic induction, we observed the SE-associated expression pattern of MIR396b in explants of the β-glucuronidase (GUS) reporter line. In order to gain insight into the miR396-controlled mechanism that is involved in SE induction, the embryogenic response of mir396 mutants and the 35S:MIR396b overexpressor line to media with different 2,4-Dichlorophenoxyacetic acid (2,4-D) concentrations was evaluated. The results suggested that miR396 might contribute to SE induction by controlling the sensitivity of tissues to auxin treatment. Within the targets of miR396 that are associated with SE induction, we identified genes encoding the GROWTH-REGULATING FACTOR (GRF) transcription factors, including GRF1, GRF4, GRF7, GRF8, and GRF9. Moreover, the study suggested a regulatory relationship between miR396, GRF, and the PLETHORA (PLT1 and PLT2) genes during SE induction. A complex regulatory relationship within the miR396–GRF1/4/8/9–PLT1/2 module that involves the negative and positive control of GRFs and PLT (respectively) by miR396 might be assumed.
Collapse
Affiliation(s)
- Aleksandra Szczygieł-Sommer
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, 40-032 Katowice, Poland.
| |
Collapse
|
4
|
Chauhan RD, Taylor NJ. Meta-topolin stimulates de novo shoot organogenesis and plant regeneration in cassava. PLANT CELL, TISSUE AND ORGAN CULTURE 2017; 132:219-224. [PMID: 32981997 PMCID: PMC7507842 DOI: 10.1007/s11240-017-1315-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/15/2017] [Indexed: 05/26/2023]
Abstract
A novel protocol for de novo shoot organogenesis from cassava has been developed utilizing meta-topolin to stimulate shoot regeneration from leaf, petiole and stem internode explants. While use of meta-topolin alone was capable of inducing shoot regeneration, a two-stage system combining meta-topolin with 2,4-D in a first stage medium, followed by subculture onto elevated levels of meta-topolin, was superior for inducing multiple shoot regeneration events in more than 35% of explants in cultivar TME 7. Caulogenesis was achieved in eleven additional cultivars. Metatopolin was also found to be beneficial for stimulating shoot regeneration from somatic embryos and cotyledon explants. The shoot organogenesis techniques described enhance the capacity of existing embryogenic systems and present previously unavailable morphogenic pathways for developing genetic transformation and gene editing technologies in cassava.
Collapse
Affiliation(s)
- Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Nigel James Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|