1
|
Hecker FA, Leggio B, König T, Kim V, Osterland M, Gnutt D, Niehaus K, Geibel S. Cell Painting unravels insecticidal modes of action on Spodoptera frugiperda insect cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105983. [PMID: 39084786 DOI: 10.1016/j.pestbp.2024.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024]
Abstract
The "Cell Painting" technology utilizes multiplexed fluorescent staining of various cell organelles, to produce high-content microscopy images of cells for multidimensional phenotype assessment. The phenotypic profiles extracted from those images can be analyzed upon perturbations with biologically active molecules to annotate the mode of action or biological activity by comparison with reference profiles of already known mechanisms of action, ultimately enabling the determination of on-target and off-target effects. This approach is already described in various human cell cultures, the most commonly used being the U2OS cell line, yet allows broad applications in additional areas of chemical-biological research. Here we describe for the first time the application and adaptation of Cell Painting to an insect cell line, the Sf9 cells from Spodoptera frugiperda. By adjusting image acquisition and analysis models, specific phenotypic profiles were obtained in a dose-dependent manner for 20 reference compounds, including representatives for the most relevant insecticidal modes of action categories (nerve & muscle, respiration and growth & development). Through a dimensionality-reduction method, both calculations of phenotypic half maximal inhibition concentration (IC50) values as well as similarity analysis of the obtained profiles by hierarchical clustering were performed. By Cell Painting effects on the phenotype could be obtained at higher sensitivity than in other assay formats, such as cytotoxicity assessments. More importantly, these analyses provide insight into mechanistic determinants of biological activity. Compounds with similar modes of action showed a high degree of proximity in a hierarchical clustering analysis while being distinct from actives with an unrelated mode of action. In essence, we provide strong evidence on the impact of Cell Painting mechanistic understanding of insecticides with regards to determinants of efficacy and safety utilizing an insect cell model system.
Collapse
Affiliation(s)
- Franziska A Hecker
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Bruno Leggio
- R&D Disease Control, Bayer SAS, Crop Science Division, Lyon, France
| | - Tim König
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Vladislav Kim
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - Marc Osterland
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - David Gnutt
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Karsten Niehaus
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Sven Geibel
- R&D Hit Discovery, Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Zou K, Wang T, Guan M, Liu Y, Li J, Liu Y, Du J, Wu D. Identification and Evaluation of qRT-PCR Reference Genes in Melanaphis sacchari. INSECTS 2024; 15:522. [PMID: 39057255 PMCID: PMC11277337 DOI: 10.3390/insects15070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Appropriate reference genes must be selected for accurate qRT-PCR data to conduct a thorough gene expression analysis in the sorghum aphid (Melanaphis sacchari, Hemiptera, Aphididae). This approach will establish a foundation for gene expression analysis and determines the efficacy of RNA interference in the sorghum aphid. Nine potential reference genes, including Actin, 18S, GAPDH, RPL7, EF-1α, EF-1β, 28S, HSP70, and TATA, were assessed under various experimental conditions to gauge their suitability based on qRT-PCR Ct values. The stability of these candidate reference genes in diverse experimental setups was analyzed employing several techniques, including the ΔCt comparative method, geNorm, Normfinder, BestKeeper, and RefFinder. The findings revealed that the quantity of ideal reference genes ascertained by the geNorm method for diverse experimental conditions remained consistent. For the developmental stages of the sorghum aphid, RPL7 and 18S proved to be the most dependable reference genes, whereas GAPDH and EF-1β were recommended as the most stable reference genes for different tissues. In experiments involving wing dimorphism, EF-1α and GAPDH were identified as the optimal reference gene pair. Under varying temperatures, EF-1α and EF-1β were found to be the most dependable gene pair. For studies focusing on insecticide susceptibility, 18S and TATA emerged as the most stable candidate reference genes. Across all experimental conditions, EF-1α and EF-1β was the optimal combination of reference genes in the sorghum aphid. This research has pinpointed stable reference genes that can be utilized across various treatments, thereby enhancing gene expression studies and functional genomics research on the sorghum aphid.
Collapse
Affiliation(s)
- Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Minghui Guan
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| |
Collapse
|
3
|
An JQ, Yu SH, Wei SJ, Zhang HP, Shi YC, Zhao QY, Fu ZY, Yang P. The Complete Mitochondrial Genome of the Chinese White Wax Scale Insect, Ericerus pela Chavannes (Hemiptera: Coccidae), with Novel Gene Arrangement and Truncated tRNA Genes. INSECTS 2023; 14:290. [PMID: 36975975 PMCID: PMC10055984 DOI: 10.3390/insects14030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The Chinese white wax scale insect, Ericerus pela Chavannes (Hemiptera: Coccidae), is one of the scale insects with great economic value and has been dispersed and reared in China for over one thousand years. Its mitochondrial genome provides essential information for the molecular identification and genetic study of this species. We assembled the complete mitochondrial genome of E. pela based on PacBio sequencing and analyzed its genomic features. The genome was 17,766 bp in length with 13 protein-coding genes, 22 tRNAs, and two rRNA genes. The analysis results showed E. pela had significant gene rearrangements involving tRNAs compared with other Coccoidea species. Furthermore, E. pela's nine tRNAs were identified to have obvious truncated structures. The phylogenetic tree compiled of the species showed a long branch of the Coccoidea lineage, which indicated the high evolutionary rate in this group. Our study revealed the mitochondrial characteristics of E. pela and enriched the mitochondrial genetic information on Coccoidea species. It also determined the occurrence of gene rearrangement for the species in this superfamily.
Collapse
Affiliation(s)
- Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Yuan-Chong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Qiu-Yu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| |
Collapse
|
4
|
Liu W, Yu SH, Zhang HP, Fu ZY, An JQ, Zhang JY, Yang P. Two Cladosporium Fungi with Opposite Functions to the Chinese White Wax Scale Insect Have Different Genome Characters. J Fungi (Basel) 2022; 8:jof8030286. [PMID: 35330288 PMCID: PMC8949958 DOI: 10.3390/jof8030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Insects encounter infection of microorganisms, and they also harbor endosymbiosis to participate in nutrition providing and act as a defender against pathogens. We previously found the Chinese white wax scale insect, Ericerus pela, was infected and killed by Cladosporium sp. (pathogen). We also found it harbored Cladosporium sp. (endogensis). In this study, we cultured these two Cladosporium fungi and sequenced their genome. The results showed Cladosporium sp. (endogensis) has a larger genome size and more genes than Cladosporium sp. (pathogen). Pan-genome analysis showed Cladosporium sp. (endogensis)-specific genes enriched in pathways related to nutrition production, such as amino acid metabolism, carbohydrate metabolism, and energy metabolism. These pathways were absent in that of Cladosporium sp. (pathogen). Gene Ontology analysis showed Cladosporium sp. (pathogen)-specific genes enriched in the biosynthesis of asperfuranone, emericellamide, and fumagillin. These terms were not found in that of Cladosporium sp. (endogensis). Pathogen Host Interactions analysis found Cladosporium sp. (endogensis) had more genes related to loss of pathogenicity and reduced virulence than Cladosporium sp. (pathogen). Cytotoxicity assay indicated Cladosporium sp. (pathogen) had cytotoxicity, while Cladosporium sp. (endogensis) had no cytotoxicity. These characters reflect the adaptation of endosymbiosis to host-restricted lifestyle and the invader of the entomopathogen to the host.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jin-Yang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
5
|
Fu ZY, An JQ, Liu W, Zhang HP, Yang P. Genomic Analyses of the Fungus Paraconiothyrium sp. Isolated from the Chinese White Wax Scale Insect Reveals Its Symbiotic Character. Genes (Basel) 2022; 13:genes13020338. [PMID: 35205383 PMCID: PMC8872350 DOI: 10.3390/genes13020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
The Chinese white wax scale, Ericerus pela, is an insect native to China. It harbors a variety of microbes. The Paraconiothyrium fungus was isolated from E. pela and genome sequenced in this study. A fungal cytotoxicity assay was performed on the Aedes albopictus cell line C6/36. The assembled Paraconiothyrium sp. genome was 39.55 Mb and consisted of 14,174 genes. The coding sequences accounted for 50.75% of the entire genome. Functional pathway analyses showed that Paraconiothyrium sp. possesses complete pathways for the biosynthesis of 20 amino acids, 10 of which E. pela lacks. It also had complementary genes in the vitamin B groups synthesis pathways. Secondary metabolism prediction showed many gene clusters that produce polyketide. Additionally, a large number of genes associated with ‘reduced virulence’ in the genome were annotated with the Pathogen–Host Interaction database. A total of 651 genes encoding carbohydrate-active enzymes were predicted to be mostly involved in plant polysaccharide degradation. Pan-specific genomic analyses showed that genes unique to Paraconiothyrium sp. were enriched in the pathways related to amino acid metabolism and secondary metabolism. GO annotation analysis yielded similar results. The top COG categories were ‘carbohydrate transport and metabolism’, ‘lipid transport and metabolism’, and ‘secondary metabolite biosynthesis, transport and catabolism’. Phylogenetic analyses based on gene family and pan genes showed that Paraconiothyrium sp is clustered together with species from the Didymosphaeriaceae family. A multi-locus sequence analysis showed that it converged with the same branch as P. brasiliense and they formed one group with fungi from the Paraconiothyrium genus. To validate the in vitro toxicity of Paraconiothyrium sp., a cytotoxicity assay was performed. The results showed that medium-cultured Paraconiothyrium sp. had no harmful effect on cell viability. No toxins were secreted by the fungus during growth. Our results imply that Paraconiothyrium sp. may establish a symbiotic relationship with the host to supply complementary nutrition to E. pela.
Collapse
Affiliation(s)
- Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
6
|
Reference Gene Selection for Expression Analyses by qRT-PCR in Dendroctonus valens. INSECTS 2020; 11:insects11060328. [PMID: 32471281 PMCID: PMC7349367 DOI: 10.3390/insects11060328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022]
Abstract
Dendroctonus valens is the main pest of the genus Pinus. To facilitate gene expression analyses, suitable reference genes for adults and mature larvae of D. valens under different temperature conditions were determined. In particular, we obtained the sequences of candidate reference genes, ACT, TUB, SHDA, PRS18, 18S rRNA, and CYP4G55, from transcriptome data. Real-time quantitative PCR was used to analyze gene expression, and geNorm, NormFinder, and BestKeeper were used to evaluate expression stability. Under different temperature conditions, the expression levels of 18S rRNA, PRS18, and TUB were stable in adults, in which 18S rRNA > PRS18 > TUB. In mature larvae, the expression levels of TUB, 18S rRNA, and SDHA were stable, in which TUB > 18S rRNA > SDHA. The combination of 18S rRNA and PRS18 is recommended for studies of gene expression in adults and the combination of 18S rRNA and TUB is effective for studies of gene expression in mature larvae of D. valens under different temperature conditions.
Collapse
|
7
|
Yang J, Zhang Y, Zhao J, Gao Y, Liu Z, Zhang P, Fan J, Zhou X, Fan R. Selection of Reference Genes for RT-qPCR Analysis Under Extrinsic Conditions in the Hawthorn Spider Mite, Amphitetranychus viennensis. Front Physiol 2020; 11:378. [PMID: 32372977 PMCID: PMC7187807 DOI: 10.3389/fphys.2020.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 01/19/2023] Open
Abstract
Hawthorn spider mite, Amphitetranychus viennensis Zacher, is an economically important arthropod pest for fruit trees and woody ornamental plants. Extensive and repetitive use of synthetic acaricides has led to the development of resistance in A. viennensis. To understand the molecular basis of pesticide resistance, and to develop genetic-based control alternatives (e.g., RNAi-based biopesticides), a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) is needed. In the proceeding phase of this research, we screened for the internal references for RT-qPCR analysis from a pool of A. viennensis housekeeping genes under the intrinsic conditions, including developmental stage, sex, and diapause. Here, we continued our efforts to search for the reference genes under an array of extrinsic conditions, including temperature, humidity, photoperiod, host plant, and dietary RNAi. The stability of these candidate reference genes was investigated using geNorm, NormFinder, BestKeeper, and ΔCt method, respectively. Finally, RefFinder, a statistical platform integrating all four algorisms, provided a comprehensive list of genes for each extrinsic condition: (1) EF1A, α-tubulin and Actin3 were the best candidates for temperature, (2) GAPDH, 18S, and Actin3 were the most stable genes for humidity, (3) V-ATPase B, Actin3, and 18S were the top reference genes for photoperiod, (4) GAPDH, V-ATPase B, and α-tubulin were recommended for host plants, and (5) GAPDH, V-ATPase B, and RPS9 were the top choices for dietary RNAi. Overall, V-ATPase B, GAPDH, and Actin3 were the most commonly selected reference genes in A. viennensis regardless of the experimental conditions, including both intrinsic and extrinsic. Information present here lays the foundation for the genomic and functional genomic research in A. viennensis.
Collapse
Affiliation(s)
- Jing Yang
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China.,Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yuying Zhang
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jin Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jianbin Fan
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University (Institute of Plant Protection, Shanxi Academy of Agricultural Science), Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| |
Collapse
|
8
|
Adeyinka OS, Tabassum B, Nasir IA, Yousaf I, Sajid IA, Shehzad K, Batcho A, Husnain T. Identification and validation of potential reference gene for effective dsRNA knockdown analysis in Chilo partellus. Sci Rep 2019; 9:13629. [PMID: 31541183 PMCID: PMC6754392 DOI: 10.1038/s41598-019-49810-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Chilo partellus is an invasive polyphagous pest that has not been effectively managed with chemical pesticides. To select potential dsRNAs for use in an alternate control strategy, it is crucial to identify and evaluate stable reference genes for knockdown expression studies. This study evaluates the expression stability of seven candidate reference genes in C. partellus larvae fed on crude bacterially-expressed dsRNAs and purified dsRNAs at different time intervals, as well as the developmental stages and sexes. The expression stabilities of the reference genes were evaluated with different software programmes, such as BestKeeper, NormFinder, deltaCt, geNorm, and RefFinder. The overall results rank ELF as the most stably expressed reference gene when larvae were fed with crude bacteria-induced dsRNAs and purified dsRNA. However, Tubulin and HSP70 were more stable under different developmental stages and sexes. The expression levels of larvae that were fed crude bacteria-induced dsRNAs of Chitinase and Acetylcholinesterase were normalized with the four most stable reference genes (ELF, HSP70, V-ATPase and Tubulin) and the least stable reference gene (18S and HSP70) based on the geNorm algorithm. The least stable reference gene showed inconsistent knockdown expression, thereby confirming that the validation of a suitable reference gene is crucial to improve assay accuracy for dsRNA-targeted gene selection in C. partellus.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Iqra Yousaf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Imtiaz Ahmad Sajid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | | | - Anicet Batcho
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
9
|
Wang Z, Meng Q, Zhu X, Sun S, Gao S, Gou Y, Liu A. Evaluation and Validation of Reference Genes for Quantitative Real-Time PCR in Helopeltis theivora Waterhouse (Hemiptera: Miridae). Sci Rep 2019; 9:13291. [PMID: 31527603 PMCID: PMC6746731 DOI: 10.1038/s41598-019-49479-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Helopeltis theivora Waterhouse is a predominant sucking pest in many tropic economic crops, such as tea, cocoa and coffee. Quantitative real-time PCR (qRT-PCR) is one of the most powerful tools to analyze the gene expression level and investigate the mechanism of insect physiology at transcriptional level. Gene expression studies utilizing qRT-PCR have been applied to numerous insects so far. However, no universal reference genes could be used for H. theivora. To obtain accurate and reliable normalized data in H. theivora, twelve candidate reference genes were examined under different tissues, developmental stages and sexes by using geNorm, NormFinder, BestKeeper, Delta Ct and RefFinder algorithms, respectively. The results revealed that the ideal reference genes differed across the treatments, and the consensus rankings generated from stability values provided by these programs suggested a combination of two genes for normalization. To be specific, RPS3A and Actin were the best suitable reference genes for tissues, RPL13A and GAPDH were suitable for developmental stages, EF1α and RPL13A were suitable for sexes, and RPL13A and RPS3A were suitable for all samples. This study represents the first systematic analysis of reference genes for qRT-PCR experiments in H. theivora, and the results can provide a credible normalization for qRT-PCR data, facilitating transcript profiling studies of functional genes in this insect.
Collapse
Affiliation(s)
- Zheng Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Qianqian Meng
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Xi Zhu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China.,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shiwei Sun
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Shengfeng Gao
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Yafeng Gou
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Aiqin Liu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China. .,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, Sun T, Wang X, Song Q. Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects. Gigascience 2019; 8:giz113. [PMID: 31518402 PMCID: PMC6743827 DOI: 10.1093/gigascience/giz113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E. pela. FINDINGS To assemble the E. pela genome, 303.92 Gb of data were generated using Illumina and Pacific Biosciences sequencing, producing 277.22 Gb of clean data for assembly. The assembled genome size was 0.66 Gb, with 1,979 scaffolds and a scaffold N50 of 735 kb. The guanine + cytosine content was 33.80%. A total of 12,022 protein-coding genes were predicted, with a mean coding sequence length of 1,370 bp. Twenty-six fatty acyl-CoA reductase genes and 35 acyltransferase genes were identified. Evolutionary analysis revealed that E. pela and aphids formed a sister group and split ∼241.1 million years ago. There were 214 expanded gene families and 2,219 contracted gene families in E. pela. CONCLUSION We present the first genome sequence from the Coccidae family. These results will help to increase our understanding of the evolution of unique features in scale insects, and provide important genetic information for further research.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Shuhui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Wei Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zunling Zhao
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture/Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sun
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Xueqing Wang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Kunming 650224, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Zhao Z, Wang L, Yue D, Ye B, Li P, Zhang B, Fan Q. Evaluation of Reference Genes for Normalization of RT-qPCR Gene Expression Data for Trichoplusia ni Cells During Antheraea pernyi (Lepidoptera: Saturniidae) Multicapsid Nucleopolyhedrovirus (AnpeNPV) Infection. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5280859. [PMID: 30624703 PMCID: PMC6324657 DOI: 10.1093/jisesa/iey133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 06/01/2023]
Abstract
Baculovirus infection impacts global gene expression in the host cell, including the expression of housekeeping genes. Evaluation of candidate reference genes during a viral infection will inform the selection of appropriate reference gene(s) for the normalization of expression data generated by Reverse Transcription Quantitative Real-timePolymerase Chain Reaction (RT-qPCR). Antheraea pernyi multicapsid nucleopolyhedrovirus (AnpeNPV) is able to infect the High Five cells (Tn-Hi5). In the present study, 10 candidate reference genes were evaluated in AnpeNPV-infected Tn-Hi5 cells. Gene expression data were analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. The candidate genes were further validated as reliable reference genes for RT-qPCR by analyzing the expression of three target genes. The results of data analysis using four statistical methods showed that RPS18 was the least stable among the candidate reference genes tested. 18S rRNA and 28S rRNA were not suitable as reference genes for RT-qPCR analysis in AnpeNPV-infected Tn-Hi5 cells. Comprehensive ranking of the 10 candidate reference genes by RefFinder analysis indicated that Ann B, c45128_g1, and ACT were the top three genes. Normalization of the expression of three target genes using the candidate reference genes indicated the same expression pattern when Ann B and c45128_g1 were used as reference genes, with slight differences in the relative expression at each infection time point. Overall, Ann B and c45128_g1 were recommended to be more suitable than the most commonly used reference genes, such as ACT, GAPDH, and TUB, for RT-qPCR data normalization in AnpeNPV-infected Tn-Hi5 cells up to 48 hpi.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Linmei Wang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Dongmei Yue
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Bo Ye
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Peipei Li
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Bo Zhang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Qi Fan
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| |
Collapse
|
12
|
Lü J, Yang C, Zhang Y, Pan H. Selection of Reference Genes for the Normalization of RT-qPCR Data in Gene Expression Studies in Insects: A Systematic Review. Front Physiol 2018; 9:1560. [PMID: 30459641 PMCID: PMC6232608 DOI: 10.3389/fphys.2018.01560] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 02/03/2023] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying expression levels of targeted genes during various biological processes in numerous areas of clinical and biological research. Selection of appropriate reference genes for RT-qPCR normalization is an elementary prerequisite for reliable measurements of gene expression levels. Here, by analyzing datasets published between 2008 and 2017, we summarized the current trends in reference gene selection for insect gene expression studies that employed the most widely used SYBR Green method for RT-qPCR normalization. We curated 90 representative papers, mainly published in 2013–2017, in which a total of 78 insect species were investigated in 100 experiments. Furthermore, top five journals, top 10 frequently used reference genes, and top 10 experimental factors have been determined. The relationships between the numbers of the reference genes, experimental factors, analysis tools on the one hand and publication date (year) on the other hand was investigated by linear regression. We found that the more recently the paper was published, the more experimental factors it tended to explore, and more analysis tools it used. However, linear regression analysis did not reveal a significant correlation between the number of reference genes and the study publication date. Taken together, this meta-analysis will be of great help to researchers that plan gene expression studies in insects, especially the non-model ones, as it provides a summary of appropriate reference genes for expression studies, considers the optimal number of reference genes, and reviews the average number of experimental factors and analysis tools per study.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Sun T, Wang XQ, Zhao ZL, Yu SH, Yang P, Chen XM. A Lethal Fungus Infects the Chinese White Wax Scale Insect and Causes Dramatic Changes in the Host Microbiota. Sci Rep 2018; 8:5324. [PMID: 29593315 PMCID: PMC5871785 DOI: 10.1038/s41598-018-23671-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
The Chinese white wax scale insect (Ericerus pela) is an economically valuable species with an important role in wax production. Recently, in a greenhouse in Kunming, we identified a genus of fungus that infects and kills E. pela females. This study sought to perform the molecular detection of entomopathogens and analyze the changes in the host microbiota after entomopathogen infection. We used library construction, high-throughput sequencing and real-time quantitative polymerase chain reaction (RT-qPCR) to identify the fungi infecting adult E. pela, to understand the changes in the host organism, and to determine the distribution of the entomopathogens. Cladosporium langeronii and C. sphaerospermum were the main pathogenic species that infected the E. pela females, and they were most prevalent in the dorsal cuticle. In vivo, after infection, the proportion of Cladosporium clearly increased. The infection had little influence on the fungal community but had a strong influence on the bacterial community. After infection, Arsenophonus was dominant, and numerous bacterial genera disappeared. However, Rickettsia, instead of Arsenophonus, became dominant in the Cladosporium-infected individuals that had also been infected with Rickettsia. We identified the species that infected E. pela females and determined the influence of infection on the host microorganisms.
Collapse
Affiliation(s)
- Tao Sun
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, 650224, China
| | - Xue-Qing Wang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, 650224, China
| | - Zun-Ling Zhao
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, 650224, China
| | - Shu-Hui Yu
- College of Agronomy, Kunming University, Kunming, 650214, China
| | - Pu Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, 650224, China.
| | - Xiao-Ming Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, 650224, China.
| |
Collapse
|
14
|
Nagy NA, Németh Z, Juhász E, Póliska S, Rácz R, Kosztolányi A, Barta Z. Evaluation of potential reference genes for real-time qPCR analysis in a biparental beetle, Lethrus apterus (Coleoptera: Geotrupidae). PeerJ 2017; 5:e4047. [PMID: 29201562 PMCID: PMC5710163 DOI: 10.7717/peerj.4047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
Hormones play an important role in the regulation of physiological, developmental and behavioural processes. Many of these mechanisms in insects, however, are still not well understood. One way to investigate hormonal regulation is to analyse gene expression patterns of hormones and their receptors by real-time quantitative polymerase chain reaction (RT-qPCR). This method, however, requires stably expressed reference genes for normalisation. In the present study, we evaluated 11 candidate housekeeping genes as reference genes in samples of Lethrus apterus, an earth-boring beetle with biparental care, collected from a natural population. For identifying the most stable genes we used the following computational methods: geNorm, NormFinder, BestKeeper, comparative delta Ct method and RefFinder. Based on our results, the two body regions sampled (head and thorax) differ in which genes are most stably expressed. We identified two candidate reference genes for each region investigated: ribosomal protein L7A and RP18 in samples extracted from the head, and ribosomal protein L7A and RP4 extracted from the muscles of the thorax. Additionally, L7A and RP18 appear to be the best reference genes for normalisation in all samples irrespective of body region. These reference genes can be used to study the hormonal regulation of reproduction and parental care in Lethrus apterus in the future.
Collapse
Affiliation(s)
- Nikoletta A Nagy
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Németh
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Edit Juhász
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Rácz
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - András Kosztolányi
- MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Barta
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Selection and validation of reference genes for qRT-PCR analysis during biological invasions: The thermal adaptability of Bemisia tabaci MED. PLoS One 2017; 12:e0173821. [PMID: 28323834 PMCID: PMC5360248 DOI: 10.1371/journal.pone.0173821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/26/2017] [Indexed: 11/19/2022] Open
Abstract
The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading to most parts of the world owing to its strong ecological adaptability, which is considered as a model insect for stress tolerance studies under rapidly changing environments. Selection of a suitable reference gene for quantitative stress-responsive gene expression analysis based on qRT-PCR is critical for elaborating the molecular mechanisms of thermotolerance. To obtain accurate and reliable normalization data in MED, eight candidate reference genes (β-act, GAPDH, β-tub, EF1-α, GST, 18S, RPL13A and α-tub) were examined under various thermal stresses for varied time periods by using geNorm, NormFinder and BestKeeper algorithms, respectively. Our results revealed that β-tub and EF1-α were the best reference genes across all sample sets. On the other hand, 18S and GADPH showed the least stability for all the samples studied. β-act was proved to be highly stable only in case of short-term thermal stresses. To our knowledge this was the first comprehensive report on validation of reference genes under varying temperature stresses in MED. The study could expedite particular discovery of thermotolerance genes in MED. Further, the present results can form the basis of further research on suitable reference genes in this invasive insect and will facilitate transcript profiling in other invasive insects.
Collapse
|
16
|
Che JX, Shi JL, Lu Y, Liu YL. Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1). AMB Express 2016; 6:106. [PMID: 27826948 PMCID: PMC5101243 DOI: 10.1186/s13568-016-0283-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Alternaria sp. MG1, an endophytic fungus isolated from Vitis vinifera, can independently produce resveratrol, indicating that this species contains the key genes for resveratrol biosynthesis. Identification of these key genes is essential to understand the resveratrol biosynthesis pathway in this strain, which is currently unknown in microorganisms. qRT-PCR is an efficient and widely used method to identify the key genes related to unknown pathways at the level of gene expression. Verification of stable reference genes in this strain is essential for qRT-PCR data normalization, although results have been reported for other Alternaria sp. strains. In this study, nine candidate reference genes including TUBA, EF1, EF2, UBC, UFD, RPS5, RPS24, ACTB and 18S were evaluated for expression stability in a diverse set of six samples representing different growth periods. We compared cell culture conditions and an optimized condition for resveratrol production. The comparison of the results was performed using four statistical softwares. A combination of TUBA and EF1 was found to be suitable for normalization of Alternaria sp. MG1 in different developmental stages, and 18S was found to be the least stable. The reference genes verified in this study will facilitate further research to explore gene expression and molecular mechanisms as well as the improvement of secondary metabolite yields in Alternaria sp. MG1. To our knowledge, this is the first validation of reference genes in Alternaria with the capability to produce resveratrol. Additionally, these results provide useful guidelines for the selection of reference genes in other Alternaria species.
Collapse
|