1
|
Nie H, Cheng C, Kong J, Li H, Hua J. Plant non-coding RNAs function in pollen development and male sterility. FRONTIERS IN PLANT SCIENCE 2023; 14:1109941. [PMID: 36875603 PMCID: PMC9975556 DOI: 10.3389/fpls.2023.1109941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements. The development of high-throughput sequencing technology offers new opportunities to evaluate the genetic mechanism of ncRNAs in plant male sterility. In this review, we summarize the critical ncRNAs that regulate gene expression in ways dependent on or independent of hormones, which involve the differentiation of the stamen primordia, degradation of the tapetum, formation of microspores, and the release of pollen. In addition, the key mechanisms of the miRNA-lncRNA-mRNA interaction networks mediating male sterility in plants are elaborated. We present a different perspective on exploring the ncRNA-mediated regulatory pathways that control CMS in plants and create male-sterile lines through hormones or genome editing. A refined understanding of the ncRNA regulatory mechanisms in plant male sterility for the development of new sterile lines would be conducive to improve hybridization breeding.
Collapse
Affiliation(s)
- Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Jin Z, Seo J, Kim B, Lee SY, Koh HJ. Identification of a Candidate Gene for the Novel Cytoplasmic Male Sterility Derived from Inter-Subspecific Crosses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:590. [PMID: 33920582 PMCID: PMC8073397 DOI: 10.3390/genes12040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023] Open
Abstract
Tetep-cytoplasmic male sterility (CMS) was developed through successive backcrosses between subspecies indica and japonica in rice (Oryza sativa L.), which showed abnormal anther dehiscence phenotypes. Whole genome sequencing and de novo assembly of the mitochondrial genome identified the chimeric gene orf312, which possesses a transmembrane domain and overlaps with two mitotype-specific sequences (MSSs) that are unique to the Tetep-CMS line. The encoded peptide of orf312 was toxic to Escherichia coli and inhibited cell growth compared to the control under isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The peptide of orf312 contains COX11-interaction domains, which are thought to be a main functional domain for WA352c in the wild abortive (WA-CMS) line of rice. A QTL for Rf-Tetep (restorer-of-fertility gene(s) originating from Tetep) was identified on chromosome 10. In this region, several restorer genes, Rf1a, Rf1b, and Rf4, have previously been reported. Collectively, the interactions of orf312, a candidate gene for Tetep-CMS, and Rf-Tetep, a restorer QTL, confer male sterility and fertility restoration, respectively, which enables a hybrid rice breeding system. Further studies on orf312 and isolation of Rf-Tetep will help to identify the underlying molecular mechanism of mitochondrial ORFs with the COX11-interaction domains.
Collapse
Affiliation(s)
- Zhuo Jin
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Jeonghwan Seo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| | - Backki Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Seung Young Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| |
Collapse
|
3
|
Xie H, Peng X, Qian M, Cai Y, Ding X, Chen Q, Cai Q, Zhu Y, Yan L, Cai Y. The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:715-726. [PMID: 29876974 DOI: 10.1111/tpj.13982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/25/2023]
Abstract
D1-cytoplasmic male sterility (CMS) rice is a sporophytic cytoplasmic male-sterile rice developed from Dongxiang wild rice that exhibits a no-pollen-grain phenotype. A mitochondrial chimeric gene (orf182) was detected by mitochondrial genome sequencing and a comparative analysis. Orf182 is composed of three recombinant fragments, the largest of which is homologous to Sorghum bicolor mitochondrial sequences. In addition, orf182 was found only in wild rice species collected from China. Northern blot analysis showed that orf182 transcripts were affected by Rf genes in the isocytoplasmic restorer line DR7. Western blot analysis showed that the ORF182 product was localized in the mitochondria of the CMS line. An expression cassette containing orf182 fused to a mitochondrial transit peptide induced the maintainer line of male sterility, which lacked pollen grains in the anthers. Furthermore, the in vivo expression of orf182 also inhibited the growth of Escherichia coli, with lower respiration rate, excess accumulation of reactive oxygen species and decreased ATP levels. We conclude that the mitochondrial chimeric gene orf182 possesses a unique structure and origin differing from other identified mitochondrial CMS genes, and this gene is connected to non-pollen type of sporophytic male sterility in D1-CMS rice.
Collapse
Affiliation(s)
- Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Mingjuan Qian
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yicong Cai
- China National Rice Research Institute, Hangzhou, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Qiusheng Chen
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Qiying Cai
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Youlin Zhu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Longan Yan
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| |
Collapse
|
4
|
Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct Integr Genomics 2018; 18:457-476. [PMID: 29626311 DOI: 10.1007/s10142-018-0606-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) lines provide crucial material to harness heterosis for crop plants, which serves as an important strategy for hybrid seed production. However, the molecular mechanism remains obscure. Although microRNAs (miRNAs) play important roles in vegetative growth and reproductive growth, there are few reports on miRNAs regulating the development of male sterility in Upland cotton. In present study, 12 small RNA libraries were constructed and sequenced for two development stages of flower buds from a CMS line and its maintainer line. Based on the results, 256 novel miRNAs were allocated to 141 new miRNA families, and 77 known miRNAs belonging to 54 conserved miRNA families were identified as well. Comparative analysis revealed that 61 novel and 10 conserved miRNAs were differentially expressed. Further transcriptome analysis identified 232 target genes for these miRNAs, which participated in cellular developmental process, cell death, pollen germination, and sexual reproduction. In addition, expression patterns of typical miRNA and the negatively regulated target genes, such as PPR, ARF, AP2, and AFB, were verified by qRT-PCR in cotton flower buds. These targets were previously reported to be related to reproduction development and male sterility, suggesting that miRNAs might act as regulators of CMS occurrence. Some miRNAs displayed specific expression profiles in special developmental stages of CMS line and its fertile hybrid (F1). Present study offers new information on miRNAs and their related target genes in exploiting CMS mechanism, and revealing the miRNA regulatory networks in Upland cotton.
Collapse
|
5
|
Kim YJ, Zhang D. Molecular Control of Male Fertility for Crop Hybrid Breeding. TRENDS IN PLANT SCIENCE 2018; 23:53-65. [PMID: 29126789 DOI: 10.1016/j.tplants.2017.10.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 05/22/2023]
Abstract
In many plant species, male-sterile female lines with cytoplasmic male sterility (CMS) or nuclear-controlled environment-sensitive genic male sterility (EGMS) have long been used to efficiently produce hybrids that harness hybrid vigor or heterosis. However, the underlying molecular mechanisms for these applications have only recently been uncovered in a few species. We provide here an update on the understanding of cytoplasmic-nuclear communication based on the discovery of mitochondrial CMS genes and their corresponding nuclear fertility determinants. Recent findings that uncover diverse mechanisms such as epigenetic, transcriptional, and post-transcriptional controls of EGMS by temperature and photoperiod signals are also reviewed. Furthermore, translational research that applies basic knowledge of plant male fertility control to hybrid seed production practice is highlighted.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|