1
|
Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Składowski K, Rutkowski T. DNA Double-Strand Break Response and Repair Gene Polymorphisms May Influence Therapy Results and Prognosis in Head and Neck Cancer Patients. Cancers (Basel) 2023; 15:4972. [PMID: 37894339 PMCID: PMC10605140 DOI: 10.3390/cancers15204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.
Collapse
Affiliation(s)
- Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Krzysztof Składowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
2
|
A functional variant in the RAD51 3′ UTR is associated with survival of hepatocellular carcinoma patients. Gene X 2023; 851:146964. [DOI: 10.1016/j.gene.2022.146964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
3
|
Goričar K, Dugar F, Dolžan V, Marinko T. NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14184365. [PMID: 36139526 PMCID: PMC9496855 DOI: 10.3390/cancers14184365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Adjuvant radiotherapy for breast cancer patients significantly improves survival and causes side effects. It is known that the response to radiotherapy is individual, but we are not yet able to predict patients with high risk for acute or late radiotherapy adverse events. This study aimed to investigate the association between homologous recombination repair (HRR) polymorphisms and radiotherapy toxicity and thus contribute to the knowledge on potential predictive biomarkers of radiotherapy toxicity in early HER2-positive breast cancer. This study was among the first to evaluate the role of HRR genetic variability with cardiac toxicity. RAD51 polymorphisms were associated with cardiac adverse events, while XRCC3 polymorphisms were associated with skin adverse events. Our results suggest that polymorphisms in key HRR genes might be used as potential biomarkers of late treatment-related adverse events in early HER2-positive breast cancer treated with radiotherapy. Abstract Radiotherapy (RT) for breast cancer significantly impacts patient survival and causes adverse events. Double-strand breaks are the most harmful type of DNA damage associated with RT, which is repaired through homologous recombination (HRR). As genetic variability of DNA repair genes could affect response to RT, we aimed to evaluate the association of polymorphisms in HRR genes with tumor characteristics and the occurrence of RT adverse events in early HER2-positive breast cancer. Our study included 101 breast cancer patients treated with adjuvant RT and trastuzumab. All patients were genotyped for eight single nucleotide polymorphisms in NBN, RAD51 and XRCC3 using competitive allele-specific PCR. Carriers of XRCC3 rs1799794 GG genotype were less likely to have higher tumor differentiation grade (OR = 0.05, 95% CI = 0.01–0.44, p = 0.007). Carriers of RAD51 rs1801321 TT genotype were more likely to have higher NYHA class in univariable (OR = 10.0; 95% CI = 1.63–61.33; p = 0.013) and multivariable (OR = 9.27; 95% CI = 1.28–67.02; p = 0.027) analysis. Carriers of RAD51 rs12593359 GG genotype were less likely to have higher NYHA class in univariable (OR = 0.09; 95% CI = 0.01–0.79; p = 0.030) and multivariable (OR = 0.07; 95% CI = 0.01–0.81; p = 0.034) analysis. Carriers of XRCC3 rs1799794 GG genotypes experienced more skin adverse events based on LENT-SOMA scale in univariable (OR = 5.83; 95% CI = 1.22–28.00; p = 0.028) and multivariable (OR = 10.90; 95% CI = 1.61–73.72; p = 0.014) analysis. In conclusion, XRCC3 and RAD51 polymorphisms might contribute to RT adverse events in early HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Franja Dugar
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tanja Marinko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
4
|
Lu X. Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer. Curr Med Chem 2021; 29:1851-1865. [PMID: 34365943 DOI: 10.2174/0929867328666210806120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. METHODS This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. RESULTS TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. CONCLUSION TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR. United Kingdom
| |
Collapse
|
5
|
Correa DD, Satagopan J, Martin A, Braun E, Kryza-Lacombe M, Cheung K, Sharma A, Dimitriadoy S, O'Connell K, Leong S, Karimi S, Lyo J, DeAngelis LM, Orlow I. Genetic variants and cognitive functions in patients with brain tumors. Neuro Oncol 2020; 21:1297-1309. [PMID: 31123752 PMCID: PMC6784270 DOI: 10.1093/neuonc/noz094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer's disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population. METHODS One hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood-brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs. RESULTS Multivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities. CONCLUSION This novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.
Collapse
Affiliation(s)
- Denise D Correa
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel Martin
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erica Braun
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Kenneth Cheung
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ajay Sharma
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sofia Dimitriadoy
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelli O'Connell
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Siok Leong
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sasan Karimi
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Lyo
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Hwang JH, An SM, Yu GE, Park DH, Kang DG, Kim TW, Park HC, Ha J, Kim CW. Association of single-nucleotide polymorphisms in NAT9 and MAP3K3 genes with litter size traits in Berkshire pigs. Arch Anim Breed 2018; 61:379-386. [PMID: 32175444 PMCID: PMC7065387 DOI: 10.5194/aab-61-379-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/31/2018] [Indexed: 01/29/2023] Open
Abstract
Litter size is an economically important trait in the pig
industry. We aimed to identify genetic markers associated with litter size,
which can be used in breeding programs for improving reproductive traits.
Single-nucleotide polymorphisms (SNPs) of Berkshire pigs in the
N-acetyltransferase 9 (NAT9) and Mitogen-activated protein kinase kinase kinase 3 (MAP3K3) genes were from RNA sequencing
results, and already exist in the databank (NCBI), and were confirmed by
polymerase chain reaction and restriction fragment length polymorphism
(PCR-RFLP). A total of 272 Berkshire sows were used to examine the genotype, and
their association with litter size traits was analyzed. The NAT9 SNP
was located in chromosome 12 exon 640 mRNA (A > G) and the
MAP3K3 SNP was located in chromosome 12 intron 11 (80, C > T).
Association analysis indicated that the GG genotype of
NAT9 and the CT genotype of MAP3K3 had the highest values
for litter size traits. The GG genotype expressed higher levels of
NAT9 mRNA in the endometrium than the other genotypes did, and a
positive correlation was found between litter size traits and NAT9,
but not MAP3K3 expression level. These results indicate that the
NAT9 and MAP3K3 can be used as candidate genes applicable
in breeding program for the improvement of litter size traits in Berkshire
pigs.
Collapse
Affiliation(s)
- Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea.,These authors contributed equally to this work
| | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea.,These authors contributed equally to this work
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| | - Hwa Chun Park
- Dasan Pig Breeding Co., San 64-2, Gasan-ri, Eunbong-eub, Namwon-si 590-831, South Korea
| | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju 660-758, South Korea
| |
Collapse
|
7
|
Mehdinejad M, Sobhan MR, Mazaheri M, Zare Shehneh M, Neamatzadeh H, Kalantar SM. Genetic Association between ERCC2, NBN, RAD51 Gene
Variants and Osteosarcoma Risk: a Systematic Review and
Meta-Analysis. Asian Pac J Cancer Prev 2017; 18:1315-1321. [PMID: 28610420 PMCID: PMC5555541 DOI: 10.22034/apjcp.2017.18.5.1315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: To date, only a few studies have investigated associations between ERCC2, NBN, and RAD51 variants and risk of developing osteosarcoma. In this systematic review and meta-analysis, we focused on clarifying links. Materials and Methods: We systematically searched PubMed, Google Scholar, and ISI web of knowledge databases to identify relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of associations with fixed effect models. Results: No statistical evidence of association was found between ERCC2 rs13181 (G vs. T: OR= 1.224, 95% CI: 0.970-1.545, p= 0.088; GT vs. TT OR= 1.135, 95% CI: 0.830-1.552, p= 0.428; GG vs. TT: OR= 1.247, 95% CI: 0.738-2.108, p= 0.409; GG+GT vs. TT: OR= 1.174, 95% CI: 0.929-1.484, p= 0.179; GG vs. GT+ TT: OR= 1.476, 95% CI: 0.886-2.460, p= 0.135), ERCC2 rs1799793 (GA+AA vs. GG: OR= 1.279, 95% CI: 0.912-1.793, p= 0.154), NBN rs709816 (OR= 1.047, 95% CI: 0.763-1.437, p= 0.775), NBN rs1805794 (OR= 1.126, 95% CI: 0.789-1.608, p= 0.513), RAD51 rs1801320 (OR= 0.977, 95% CI: 0.675-1.416, p= 0.904), RAD51 rs1801321 (TT+GT vs. GG OR= 1.167, 95% CI: 0.848-1.604, p= 0.343), RAD51 rs12593359 (GG+GT vs. TT OR= 0.761, 95% CI: 0.759-1.470, p= 0.744) polymorphisms and osteosarcomas. The lack of the original data limited our further evaluation of the adjusted ORs concerning age and gender; however, the previous individual studies results indicated the age-and gender-specific effects of two ERCC2 rs1799793 and NBN rs1805794 variants on osteosarcoma risk. Conclusion: The results suggested a lack of association between the ERCC2 (rs13181 and rs1799793), NBN (rs709816 and rs1805794), and RAD51 (rs1801320, rs1801321, and rs12593359) variants with osteosarcoma risk. Further comprehensive and well-designed studies are required to assess the role for ERCC2, NBN, RAD51 variants in osteosarcoma development more adequately.
Collapse
Affiliation(s)
- Masoud Mehdinejad
- Department of Orthopedics, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|