1
|
Zhang Y, Paik SS, Kim IB. Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses. Exp Neurobiol 2024; 33:152-164. [PMID: 38993082 PMCID: PMC11247282 DOI: 10.5607/en24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
2
|
McPhee S, Shynkaruk T, Buchynski K, Crowe T, Schwean-Lardner K. How does visible light flicker impact laying hen pullet behavior, fear, and stress levels? Poult Sci 2024; 103:103713. [PMID: 38621348 PMCID: PMC11019458 DOI: 10.1016/j.psj.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Many characteristics of artificial light have been evaluated; however, light-flicker frequency (F) has not been assessed extensively in poultry. Pullets (1,344 per strain [S]; Lohmann Brown-Lite [LB] and LSL-Lite [LW]) were placed into 8 light-tight rooms, containing 6 floor pens (15 pen replicates per F × S for 30 and 250 Hz; 18 pen replicates per F x S for 90 Hz), and assigned 1 of 3 F treatments (30, 90, 250 Hz). The experiment took place over 2 trials (blocks). To evaluate long-term effects of F during rearing, birds were followed through the hen phase. Data were analyzed using Proc Mixed (SAS 9.4). Differences were considered significant when P ≤ 0.05, and behaviors are expressed as percentage of time. Pullets reared under 30 Hz spent more time performing nutritive behaviors (P < 0.01) and as "unidentified" (P = 0.02) than other treatments. Active behavior demonstrated an age x F interaction, with pullets being more active at 16 wk, regardless of F (P < 0.01). Comfort behaviors were higher at 16 wk compared to other ages, regardless of F (P < 0.01). Exploratory behaviors were lowest at 4 wk in pullets under 30 Hz (P < 0.01). Aggressive behaviors (12 wk) were higher in pullets reared under 250 Hz than those under 90 Hz (P < 0.01). Comb score was unaffected by F (P = 0.79) and all birds scored had a full plumage. Heterophil-to-lymphocyte ratio was unaffected by F at 7 or 15 wk (P = 0.85 and P = 0.54, respectively). In trial 1, pullets reared under 90 Hz had higher corticosterone concentrations than those reared under 250 Hz (P = 0.02) and trial 2 there were no effects of F (P = 0.97). For novel object test, LW pullets reared under 90 Hz had a higher latency to peck than LW pullets under 30 Hz or 250 Hz (P = 0.03). Hen behavior (wk 39) and fear tests (36 wk; novel object test (P = 0.86) and tonic immobility (P = 0.37)) were unaffected by F. Overall, minimal effects of F were seen on pullet and hen behavior and stress.
Collapse
Affiliation(s)
- S McPhee
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - K Buchynski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A9, Canada
| | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada.
| |
Collapse
|
3
|
Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065998. [PMID: 36983068 PMCID: PMC10052719 DOI: 10.3390/ijms24065998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Light is a fundamental aspect of our lives, being involved in the regulation of numerous processes in our body. While blue light has always existed in nature, with the ever-growing number of electronic devices that make use of short wavelength (blue) light, the human retina has seen increased exposure to it. Because it is at the high-energy end of the visible spectrum, many authors have investigated the theoretical harmful effects that it poses to the human retina and, more recently, the human body, given the discovery and characterization of the intrinsically photosensitive retinal ganglion cells. Many approaches have been explored, with the focus shifting throughout the years from examining classic ophthalmological parameters, such as visual acuity, and contrast sensitivity to more complex ones seen on electrophysiological assays and optical coherence tomographies. The current study aims to gather the most recent relevant data, reveal encountered pitfalls, and suggest future directions for studies regarding local and/or systemic effects of blue light retinal exposures.
Collapse
Affiliation(s)
- Răzvan-Geo Antemie
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Ciprian Samoilă
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Hayano J, Ueda N, Kisohara M, Yoshida Y, Yuda E. Ambient-task combined lighting to regulate autonomic and psychomotor arousal levels without compromising subjective comfort to lighting. J Physiol Anthropol 2021; 40:8. [PMID: 34372917 PMCID: PMC8353805 DOI: 10.1186/s40101-021-00258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Background Although evidence of both beneficial and adverse biological effects of lighting has accumulated, biologically favorable lighting often does not match subjectively comfortable lighting. By controlling the correlated color temperature (CCT) of ambient lights, we investigated the feasibility of combined lighting that meets both biological requirements and subjective comfort. Methods Two types of combined lightings were compared; one consisted of a high-CCT (12000 K) light-emitting diode (LED) panel as the ambient light and a low-CCT (5000 K) LED stand light as the task light (high-low combined lighting), and the other consisted of a low-CCT (4500 K) LED panel as the ambient light and the same low-CCT (5000 K) stand light as the task light (low-low combined lighting) as control. Ten healthy subjects (5 young and 5 elderly) were exposed to the two types of lighting on separate days. Autonomic function by heart rate variability, psychomotor performances, and subjective comfort were compared. Results Both at sitting rest and during psychomotor workload, heart rate was higher and the parasympathetic index of heart rate variability was lower under the high-low combined lighting than the low-low combined lighting in both young and elderly subject groups. Increased psychomotor alertness in the elderly and improved sustainability of concentration work performance in both age groups were also observed under the high-low combined lighting. However, no significant difference was observed in the visual-analog-scale assessment of subjective comfort between the two types of lightings. Conclusions High-CCT ambient lighting, even when used in combination with low-CCT task lighting, could increase autonomic and psychomotor arousal levels without compromising subjective comfort. This finding suggests the feasibility of independent control of ambient and task lighting as a way to achieve both biological function regulation and subjective comfort.
Collapse
Affiliation(s)
- Junichiro Hayano
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Norihiro Ueda
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masaya Kisohara
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yutaka Yoshida
- Nagoya City University Graduate School of Design and Architecture, Nagoya, 464-0083, Japan
| | - Emi Yuda
- Center for Data-driven Science and Artificial Intelligence, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, 980-8576, Japan
| |
Collapse
|
5
|
Rzepka-Migut B, Paprocka J. Melatonin-Measurement Methods and the Factors Modifying the Results. A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1916. [PMID: 32183489 PMCID: PMC7142625 DOI: 10.3390/ijerph17061916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023]
Abstract
Melatonin plays an important role in regulating the sleep-wake cycle and adaptation to environmental changes. Concentration measurements in bioliquids such as serum/plasma, saliva and urine are widely used to assess peripheral rhythm. The aim of the study was to compare methods and conditions of determinations carried out with the identification of factors potentially affecting the measurements obtained. We have identified a group of modifiable and unmodifiable factors that facilitate data interpretation. Knowledge of modifiers allows you to carefully plan the test protocol and then compare the results. There is no one universal sampling standard, because the choice of method and biofluid depends on the purpose of the study and the research group.
Collapse
Affiliation(s)
- Beata Rzepka-Migut
- Department of Pediatric Neurology and Pediatrics, St. Queen Jadwiga’s Regional Clinical Hospital No 2 Rzeszów, 35-301 Rzeszów, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
6
|
Yuda E, Yoshida Y, Ueda N, Hayano J. Difference in autonomic nervous effect of blue light depending on the angle of incidence on the eye. BMC Res Notes 2020; 13:141. [PMID: 32156315 PMCID: PMC7063703 DOI: 10.1186/s13104-020-04988-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Blue light has been attributed to the adverse biological effects caused by the use of smartphones and tablet devices at night. However, it is not realistic to immediately avoid nighttime exposure to blue light in the lifestyle of modern society, so other effective methods should be investigated. Earlier studies reported that inferior retinal light exposure causes greater melatonin suppression than superior retinal exposure. We examined whether the autonomic responses to blue light depends on the angle of incidence to the eye. Results In eight healthy subjects, blue light from organic electroluminescent lighting device (15.4 lx at subjects’ eye) was exposed from 6 angles (0º, 30º, 45º, 135º, 150º, and 180º) for 5 min each with a 10-min interval of darkness. After adjusting the order effect of angles, however, no significant difference in heart rate or autonomic indices of heart rate variability with the angle of incidence was detected in this study.
Collapse
Affiliation(s)
- Emi Yuda
- Tohoku University Graduate School of Engineering, Aoba 6-6-05 Aramaki Aoba-ku, Sendai, 980-8759, Japan
| | - Yutaka Yoshida
- Nagoya City University Graduate School of Design and Architecture, Kita Chikusa 2-1-10 Chikusa-ku, Nagoya, 464-0083, Japan
| | - Norihiro Ueda
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, 467-8601, Japan
| | - Junichiro Hayano
- Department of Medical Education, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
7
|
Salivary melatonin suppression under 100-Hz flickering blue light and non-flickering blue light conditions. Neurosci Lett 2020; 722:134857. [PMID: 32097701 DOI: 10.1016/j.neulet.2020.134857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Bright light at night has been known to suppress melatonin secretion. Photoreceptors, known as intrinsically photosensitive retinal ganglion cells (ipRGCs), project dark/bright information into the superchiasmatic nucleus, which regulates the circadian system. Electroretinograms of ipRGCs show fluctuation that is synchronized with light ON-OFF stimulation. This finding suggests that the flickering condition of light may have an impact on our circadian system. In this study, we evaluate light-induced melatonin suppression under flickering and non-flickering light conditions. Fifteen male subjects between the ages of 20 and 23 years (mean ± SD, 21.9 ± 1.9) were exposed to three light conditions (dim, 100-Hz flickering and non-flickering light) from 1:00 a.m. to 2:30 a.m. Saliva samples were taken just before 1:00 and at 1:15, 1:30, 2:00, and 2:30 a.m. Repeated-measure t-test with Bonferroni correction showed a significant decrease in melatonin levels under both 100-Hz and non-flickering light conditions compared to dim light conditions after 2:00 a.m. Moreover, at 2:30 a.m., the rate of change in melatonin level under 100 Hz of flickering light was significantly lower than that under non-flickering light. Our present findings suggest that 100-Hz flickering light may suppress melatonin secretion more than non-flickering light.
Collapse
|
8
|
Yasukouchi A, Maeda T, Hara K, Furuune H. Non-visual effects of diurnal exposure to an artificial skylight, including nocturnal melatonin suppression. J Physiol Anthropol 2019; 38:10. [PMID: 31462321 PMCID: PMC6714349 DOI: 10.1186/s40101-019-0203-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, more consideration is being given to the beneficial effects of lighting on the maintenance and promotion of the health and well-being of office occupants in built environments. A new lighting technology using Rayleigh scattering has made it possible to simulate a blue sky. However, to date, no studies have examined the possible beneficial effects of such artificial skylights. The aims of this study were to examine the non-visual effects of artificial skylights and conventional fluorescent lights in a simulated office environment and to clarify the feature effects of the artificial skylights. METHODS Participants were 10 healthy male adults. Non-visual effects were evaluated based on brain arousal levels (α-wave ratio and contingent negative variation [CNV]), autonomic nervous activity (heart rate variability [HRV]), work performance, and subjective responses during daytime exposure to either an artificial skylight or fluorescent lights, as well as nocturnal melatonin secretion. RESULTS Subjective evaluations of both room lighting-related "natural" and "attractive" items and the "connected to nature" item were significantly higher with the skylight than with the fluorescent lights. Cortical arousal levels obtained from the early component of the CNV amplitude were significantly lower with the skylight than with the fluorescent lights, whereas α-wave ratio and work performance were similar between the two light sources. The HRV evaluation showed that sympathetic nerve tone was lower and parasympathetic nerve tone was higher, both significantly, for the skylight than for the fluorescent lights during daytime. Nocturnal melatonin secretion was significantly greater before and during light exposure at night under the daytime skylight than under the fluorescent lights. CONCLUSIONS Our results suggest that artificial skylights have some advantages over conventional fluorescent lights in maintaining ordinary work performance during daytime with less psychological and physiological stress. The findings also suggest that the artificial skylights would enable built environments to maintain long-term comfort and productivity.
Collapse
Affiliation(s)
- Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan.
| | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Kazuyoshi Hara
- La Forêt Engineering Co., Ltd, Roppongi Annex 7F, 6-7-6, Roppongi, Minato-ku, Tokyo, 106-0032, Japan
| | - Hiroyuki Furuune
- La Forêt Engineering Co., Ltd, Roppongi Annex 7F, 6-7-6, Roppongi, Minato-ku, Tokyo, 106-0032, Japan
| |
Collapse
|
9
|
Katsuura T, Lee S. A review of the studies on nonvisual lighting effects in the field of physiological anthropology. J Physiol Anthropol 2019; 38:2. [PMID: 30670097 PMCID: PMC6343353 DOI: 10.1186/s40101-018-0190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Here, we review the history and the trends in the research on the nonvisual effect of light in the field of physiological anthropology. Research on the nonvisual effect of light in the field of physiological anthropology was pioneered by Sato and colleagues in the early 1990s. These authors found that the color temperature of light affected physiological functions in humans. The groundbreaking event with regard to the study of nonvisual effects of light was the discovery of the intrinsically photosensitive retinal ganglion cells in the mammalian retina in the early 2000s. The interest of the physiological anthropology scientific community in the nonvisual effects of light has been increasing since then. A total of 61 papers on nonvisual effects of light were published in the Journal of Physiological Anthropology (including its predecessor journals) until October 2018, 14 papers (1.4/year) in the decade from 1992 to 2001, 45 papers (2.8/year) in the 16 years between 2002 and 2017, and two papers in 2018 (January-October). The number of papers on this topic has been increasing in recent years. We categorized all papers according to light conditions, such as color temperature of light, light intensity, and monochromatic light. Among the 61 papers, 11 papers were related to color temperature, 20 papers were related to light intensity, 18 papers were related to monochromatic light, and 12 papers were classified as others. We provide an overview of these papers and mention future research prospects.
Collapse
Affiliation(s)
- Tetsuo Katsuura
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Soomin Lee
- Center for Environment, Health and Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|