1
|
Sanchez-Cano A, Luesma-Bartolomé MJ, Solanas E, Orduna-Hospital E. Comparative Effects of Red and Blue LED Light on Melatonin Levels During Three-Hour Exposure in Healthy Adults. Life (Basel) 2025; 15:715. [PMID: 40430143 PMCID: PMC12113466 DOI: 10.3390/life15050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19-55 years were exposed to red and blue light for three hours (9:00 p.m.-midnight), with hourly saliva samples analyzed via ELISA to track melatonin levels. Initially, melatonin levels were comparable under both light conditions. After one hour, both lights suppressed melatonin, but differences emerged after two hours: blue light-maintained suppression, with levels at 7.5 pg/mL, while red light allowed recovery to 26.0 pg/mL (p = 0.019). This pattern persisted at the third hour. Blue light had stronger suppression effects, particularly in younger participants and men. These results underscore blue light's disruptive effects on circadian health and highlight red light as a less disruptive alternative for nighttime environments.
Collapse
Affiliation(s)
- Ana Sanchez-Cano
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| | - María José Luesma-Bartolomé
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain; (M.J.L.-B.); (E.S.)
| | - Estela Solanas
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain; (M.J.L.-B.); (E.S.)
| | - Elvira Orduna-Hospital
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Nie J, Xu N, Chen Z, Huang L, Jiao F, Chen Y, Pan Z, Deng C, Zhang H, Dong B, Li J, Tao T, Kang X, Chen W, Wang Q, Tong Y, Zhao M, Zhang G, Shen B. More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency. Photochem Photobiol Sci 2022; 22:809-824. [PMID: 36527588 DOI: 10.1007/s43630-022-00354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China.
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China.
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China.
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Chuhan Deng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Haodong Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Boyan Dong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Weihua Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Yuzhen Tong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China
| |
Collapse
|
3
|
Yasukouchi A, Maeda T, Hara K, Furuune H. Non-visual effects of diurnal exposure to an artificial skylight, including nocturnal melatonin suppression. J Physiol Anthropol 2019; 38:10. [PMID: 31462321 PMCID: PMC6714349 DOI: 10.1186/s40101-019-0203-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, more consideration is being given to the beneficial effects of lighting on the maintenance and promotion of the health and well-being of office occupants in built environments. A new lighting technology using Rayleigh scattering has made it possible to simulate a blue sky. However, to date, no studies have examined the possible beneficial effects of such artificial skylights. The aims of this study were to examine the non-visual effects of artificial skylights and conventional fluorescent lights in a simulated office environment and to clarify the feature effects of the artificial skylights. METHODS Participants were 10 healthy male adults. Non-visual effects were evaluated based on brain arousal levels (α-wave ratio and contingent negative variation [CNV]), autonomic nervous activity (heart rate variability [HRV]), work performance, and subjective responses during daytime exposure to either an artificial skylight or fluorescent lights, as well as nocturnal melatonin secretion. RESULTS Subjective evaluations of both room lighting-related "natural" and "attractive" items and the "connected to nature" item were significantly higher with the skylight than with the fluorescent lights. Cortical arousal levels obtained from the early component of the CNV amplitude were significantly lower with the skylight than with the fluorescent lights, whereas α-wave ratio and work performance were similar between the two light sources. The HRV evaluation showed that sympathetic nerve tone was lower and parasympathetic nerve tone was higher, both significantly, for the skylight than for the fluorescent lights during daytime. Nocturnal melatonin secretion was significantly greater before and during light exposure at night under the daytime skylight than under the fluorescent lights. CONCLUSIONS Our results suggest that artificial skylights have some advantages over conventional fluorescent lights in maintaining ordinary work performance during daytime with less psychological and physiological stress. The findings also suggest that the artificial skylights would enable built environments to maintain long-term comfort and productivity.
Collapse
Affiliation(s)
- Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan.
| | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Kazuyoshi Hara
- La Forêt Engineering Co., Ltd, Roppongi Annex 7F, 6-7-6, Roppongi, Minato-ku, Tokyo, 106-0032, Japan
| | - Hiroyuki Furuune
- La Forêt Engineering Co., Ltd, Roppongi Annex 7F, 6-7-6, Roppongi, Minato-ku, Tokyo, 106-0032, Japan
| |
Collapse
|