1
|
Bajwa KK, Punetha M, Kumar D, Yadav PS, Long CR, Selokar NL. Electroporation-based CRISPR gene editing in adult buffalo fibroblast cells. Anim Biotechnol 2023; 34:5055-5066. [PMID: 37870061 DOI: 10.1080/10495398.2023.2271030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Electroporation is a widely used method for delivering CRISPR components into cells; however, it presents challenges when applied to difficult-to-transfect cells like adult buffalo fibroblasts. In this study, the ITGB2 gene (encoding the CD18 protein), plays vital for cellular adhesion and immune responses, was selected for editing experiments. To optimize electroporation conditions, we investigated parameters such as electric field strength, pulse duration, plasmid DNA amount, cuvette type, and cell type. The best transfection rates were obtained in a 4 mm gap cuvette with a single 20-millisecond pulse of 300 V using a 10 μg of all-in-one CRISPR plasmid for 106 cells in 100 μL of electroporation buffer. Increasing DNA quantity enhanced transfection rates but compromised cell viability. The 4 mm cuvette gap had high transfection rates than the 2 mm gap, and newborn cells exhibited higher transfection rates than adult cells. We achieved transfection rates of 10-12% with a cell viability of 25-30% for adult fibroblast cells. Subsequently, successfully edited the ITGB2 gene with a 30% editing efficiency, confirmed through various analysis methods, including T7E1 assay, TIDE and ICE analysis, and TA cloning. In conclusion, electroporation conditions reported here can edit buffalo gene(s) for various biotechnological research applications.
Collapse
Affiliation(s)
- Kamlesh Kumari Bajwa
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Meeti Punetha
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Dharmendra Kumar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Prem Singh Yadav
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Chares R Long
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Naresh L Selokar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Ebrahimi M, Mara L, Chessa B, Chessa F, Parham A, Dattena M. Optimizing injection time of GFP plasmid into sheep zygote. Reprod Domest Anim 2021; 56:467-475. [PMID: 33368650 DOI: 10.1111/rda.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Microinjection of exogenous DNA into the cytoplasm of matured oocytes or zygotes is a promising technique to generate transgenic animals. However, the data about the microinjection time and procedure in sheep are limited and have not treated in detail. To obtain more in-depth information, the Sarda sheep oocytes from abattoir-derived ovaries were subjected to IVM and IVF. Then, the GFP plasmid as a reporter gene was injected into the cytoplasm of MII oocytes (n: 95) and zygotes at different post-insemination intervals (6-8 hpi, n: 120; 8-10 hpi, n: 122; 10-12 hpi, n: 110 and 12-14 hpi, n: 96). There were no significant differences in the cleavage rates between the groups. However, blastocyst rate of injected zygotes at all-time intervals was significantly lower than injected MII oocytes and control group (p < 0.05). Interestingly, the proportion of GFP-positive embryos was higher at 8-10 hpi compared with other injected groups (4 % versus 0 %, p < 0.01). Among these, the proportion of mosaic embryos was high and two of those embryos developed to the blastocyst stage. In conclusion, we settled on the cytoplasmic microinjection of GFP plasmid at 8-10 hpi as an optimized time point for the production of transgenic sheep and subsequent experiments.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Bernardo Chessa
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Abbas Parham
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
3
|
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo - An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151:95-102. [PMID: 32320839 DOI: 10.1016/j.theriogenology.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Large animals play important roles as model animals for biomedical sciences and translational research. The water buffalo (Bubalus bubalis) is an economically important, multipurpose livestock species. Important assisted reproduction techniques, such as in vitro fertilization, cryo-conservation of sperm and embryos, embryo transfer, somatic cell nuclear transfer, genetic engineering, and genome editing have been successfully applied to buffaloes. Recently, detailed whole genome data and transcriptome maps have been generated. In addition, rapid progress has been made in stem cell biology of the buffalo. Apart from embryonic stem cells, bubaline extra-embryonic stem cells have gained particular interest. The multipotency of non-embryonic stem cells has been revealed, and their utility in basic and applied research is currently investigated. In particular, success achieved in bubaline extra-embryonic stem cells may have important roles in experimental biology and therapeutic regenerative medicine. Progress in other farm animals in assisted reproduction techniques, stem cell biology and genetic engineering, which could be of importance for buffalo, will also be briefly summarized.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | | | - Prem S Yadav
- ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| |
Collapse
|
4
|
Disulphide-less crotamine is effective for formation of DNA-peptide complex but is unable to improve bovine embryo transfection. ZYGOTE 2019; 28:72-79. [PMID: 31662126 DOI: 10.1017/s0967199419000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to investigate the ability of disulphide-less crotamine (dLCr) to complex DNA and to evaluate whether the DNA-dLCr complex is capable of improving transfection in bovine embryos. Three experiments were performed to: (i) evaluate the formation and stability of the DNA-dLCr complex; (ii) assess the dLCr embryotoxicity by exposure of bovine embryos to dLCr; and (iii) assess the efficiency of bovine embryo transfection after microinjection of the DNA-dLCr complex or green fluorescent protein (GFP) plasmid alone (control). DNA complexation by dLCr after 30 min of incubation at 1:100 and 1:50 proportions presented higher efficiency (P < 0.05) than the two controls: native crotamine (NCr) 1:10 and lipofectamine. There was no difference between DNA-dLCr 1:25 and the controls. The DNA-dLCr complexation was evaluated at different proportions and times. In all, at least half of maximum complexation was achieved within the initial 30 min. No embryotoxicity of dLCr was verified after exposure of in vitro fertilized embryos to different concentrations of the peptide. The effectiveness of dLCr to improve exogenous gene expression was evaluated by microinjection of the DNA-dLCr complex into in vitro fertilized zygotes, followed by verification of both embryo development and GFP expression. From embryos microinjected with DNA only, 4.6% and 2.8% expressed the GFP transgene at day 5 and day 7, respectively. The DNA-dLCr complex did not increase the number of GFP-positive embryos. In conclusion, dLCr forms a complex with DNA and its application in in vitro culture is possible. However, the dLCr peptide sequence should be redesigned to improve GFP expression.
Collapse
|
5
|
Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using Sleeping Beauty transposon. Tissue Cell 2018; 51:49-55. [DOI: 10.1016/j.tice.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
|
6
|
Hassanane MS, El Makawy AI, Helalia SM, Abdoon AS, Khalil KM, Ghanem TA, Tohamy AM, Sun XF, Shen W. First study of sperm mediated gene transfer in Egyptian river buffalo. J Genet Eng Biotechnol 2017; 15:475-482. [PMID: 30647689 PMCID: PMC6296624 DOI: 10.1016/j.jgeb.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/08/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023]
Abstract
The present study was carried out to find the best treatments for enhancing the ration of insertion of a desired gene construct (pEGFP-N1) onto the sperm of buffalo as the first step for the production of transgenic buffalo using sperm mediated gene transfer (SMGT). The tested conditions were plasmid DNA concentration, sperm concentration, transfecting agent concentration: Dimethyle sulphoxide (DMSO) and time of transfection. The study proved that the best conditions for producing transgenic embryos were incubation sperm solution its concentration is 107/ml sperm with 3% DMSO: with 20 µg/ml from the linarized DNA, for 15 min at 4 °C are the best conditions to produce transgenic buffalo embryo using sperm mediated gene transfer.
Collapse
Key Words
- ANOVA, analysis of variance
- Buffalo embryos
- CCC, covalently closed circular
- COCs, Cumulus oocyte complexes
- DMSO
- DMSO, Dimethyle sulphoxide
- EGFP
- EGFP, enhanced green fluorescent protein
- IVF, in vitro fertilization
- MII, second meiotic division
- OD, optical density
- PBS, Phosphate buffer saline
- SMGT
- SMGT, sperm mediated gene transfer
- TCM199, tissue culture medium
- Transgenic
Collapse
Affiliation(s)
- Mohamed S. Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Aida I. El Makawy
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Sahar M. Helalia
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | - Ahmed S. Abdoon
- Animal Reproduction and Artificial Insemination Department, Veterinary Research Division, National Research Centre, Egypt
| | - Kamal M.A. Khalil
- Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
| | | | - Amany M. Tohamy
- Zoology Department, Faculty of Science, Helwan University, Egypt
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Luchetti CG, Bevacqua RJ, Lorenzo MS, Tello MF, Willis M, Buemo CP, Lombardo DM, Salamone DF. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos. Reprod Domest Anim 2016; 51:501-8. [PMID: 27260090 DOI: 10.1111/rda.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids.
Collapse
Affiliation(s)
- C G Luchetti
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - R J Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M S Lorenzo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M F Tello
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Willis
- Centro de Estudios Biomedicos, Biotecnologicos, Ambientales y Diagnostico (CEBBAD), Universidad Maimonides, Ciudad Autónoma de Buenos Aires, Argentina
| | - C P Buemo
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D M Lombardo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D F Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|