1
|
Doddamani D, Lázár B, Ichikawa K, Hu T, Taylor L, Gócza E, Várkonyi E, McGrew MJ. Propagation of goose primordial germ cells in vitro relies on FGF and BMP signalling pathways. Commun Biol 2025; 8:301. [PMID: 40000797 PMCID: PMC11861285 DOI: 10.1038/s42003-025-07715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Mitotically active embryonic reproductive cells, the primordial germ cells (PGCs), are an ideal cell type for cryopreserving functional reproductive cells for avian species. Their low number in the avian embryo, however, renders cryopreservation and germline transmission methodologies difficult. Here, we develop a culture medium for the long-term in vitro culture of PGCs from the goose, Anser anser domesticus. In contrast to chicken, goose PGC self-renewal is dependent on the TGF-β family member, BMP4, and, conversely, is inhibited by Activin A. An RNA transcriptome analysis reveals commonalities between cultured PGCs from chicken and goose species, including a marked transcriptional difference between male and female goose PGCs. In vitro propagated goose PGCs are amenable to genetic modification using DNA transposons and colonising the gonads of xenogeneic sterile host embryos. These data demonstrate that the conservation and cryopreservation of the genetic diversity of the >1400 endangered bird species using PGCs remains a valid possibility.
Collapse
Affiliation(s)
- Dadakhalandar Doddamani
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Bence Lázár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Hungary
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Kennosuke Ichikawa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Tuanjun Hu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- National Gene Pool of Waterfowl, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Elen Gócza
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Eszter Várkonyi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Hungary
| | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Rönkä K, Eroukhmanoff F, Kulmuni J, Nouhaud P, Thorogood R. Beyond genes-for-behaviour: The potential for genomics to resolve long-standing questions in avian brood parasitism. Ecol Evol 2024; 14:e70335. [PMID: 39575141 PMCID: PMC11581780 DOI: 10.1002/ece3.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 11/24/2024] Open
Abstract
Behavioural ecology by definition of its founding 'Tinbergian framework' is an integrative field, however, it lags behind in incorporating genomic methods. 'Finding the gene/s for a behaviour' is still rarely feasible or cost-effective in the wild but as we show here, genomic data can be used to address broader questions. Here we use avian brood parasitism, a model system in behavioural ecology as a case study to highlight how behavioural ecologists could use the full potential of state-of-the-art genomic tools. Brood parasite-host interactions are one of the most easily observable and amenable natural laboratories of antagonistic coevolution, and as such have intrigued evolutionary biologists for decades. Using worked examples, we demonstrate how genomic data can be used to study the causes and mechanisms of (co)evolutionary adaptation and answer three key questions for the field: (i) Where and when should brood parasitism evolve?, (ii) When and how should hosts defend?, and (iii) Will coevolution persist with ecological change? In doing so, we discuss how behavioural and molecular ecologists can collaborate to integrate Tinbergen's questions and achieve the coherent science that he promoted to solve the mysteries of nature.
Collapse
Affiliation(s)
- Katja Rönkä
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of BiologyUniversity of OsloOsloNorway
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Evolution and Population Biology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pierre Nouhaud
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgroUniv MontpellierMontpellierFrance
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Liu L, Wei J, Chen C, Liang Q, Wang B, Wu W, Li G, Zheng X. Electroporation-based Easi-CRISPR yields biallelic insertions of EGFP-HiBiT cassette in immortalized chicken oviduct epithelial cells. Poult Sci 2023; 102:103112. [PMID: 37806084 PMCID: PMC10568294 DOI: 10.1016/j.psj.2023.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Laying hens are an excellent experimental oviduct model for studying reproduction biology. Because chicken oviduct epithelial cells (cOECs) have a crucial role in synthesizing and secreting ovalbumin, laying hens have been regarded an ideal bioreactor for producing pharmaceuticals in egg white through transgene or gene editing of the ovalbumin (OVA) gene. However, related studies in cOECs are largely limited because of the lack of immortalized model cells. In addition, the editing efficiency of conventional CRISPR-HDR knock-in in chicken cells is suboptimal (ranging from 1 to 10%) and remains elevated. Here, primary cOECs were isolated from young laying hens, then infected with a retrovirus vector of human telomerase reverse transcriptase (hTERT), and immortalized cOECs were established. Subsequently, an electroporation-based Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR) method was adopted to integrate an EGFP-HiBiT cassette into the chicken OVA locus (immediately upstream of the stop codon). The immortalized cOECs reflected the self-renewal capability and phenotype of oviduct epithelial cells. This is because these cells not only maintained stable proliferation and normal karyotype and had no potential for malignant transformation, but also expressed oviduct markers and an epithelial marker and had a morphology similar to that of primary cOECs. EGFP expression was detected in the edited cells through microscopy, flow cytometry, and HiBiT/Western blotting. The EGFP-HiBiT knock-in efficiency reached 27.9% after a single round of electroporation, which was determined through genotyping and DNA sequencing. Two single cell clones contained biallelic insertions of EGFP-HiBiT donor cassettes. In conclusion, our established immortalized cOECs could act as an in vitro cell model for gene editing in chicken, and this electroporation-based Easi-CRISPR strategy will contribute to the generation of avian bioreactors and other gene-edited (GE) birds.
Collapse
Affiliation(s)
- Lingkang Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Jinyu Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Buffalo Research Institute, Chinese Academy of Agricultural Sciences and Guangxi Zhuang Nationality Autonomous Region, Nanning 530004, China
| | - Chen Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qianxue Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Boyong Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wende Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Xibang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China.
| |
Collapse
|
5
|
Challagulla A, Jenkins KA, O'Neil TE, Morris KR, Wise TG, Tizard ML, Bean AGD, Schat KA, Doran TJ. Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs. Anim Biotechnol 2023; 34:775-784. [PMID: 32707002 DOI: 10.1080/10495398.2020.1789869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of simple and readily adoptable methods to mediate germline engineering of the chicken genome will have many applications in research, agriculture and industrial biotechnology. We report germline targeting of the endogenous chicken Interferon Alpha and Beta Receptor Subunit 1 (IFNAR1) gene by in vivo transgenic expression of the high-fidelity Cas9 (Cas9-HF1) and guide RNAs (gRNAs) in chickens. First, we developed a Tol2 transposon vector carrying Cas9-HF1, IFNAR1-gRNAs (IF-gRNAs) and green fluorescent protein (GFP) transgenes (pTgRCG) and validated in chicken fibroblast DF1 cells. Next, the pTgRCG plasmid was directly injected into the dorsal aorta of embryonic day (ED) 2.5 chicken embryos targeting the circulating primordial germ cells (PGCs). The resulting chimera roosters generated a fully transgenic generation 1 (G1) hen with constitutive expression of Cas9-HF1 and IF-gRNAs (G1_Tol2-Cas9/IF-gRNA). We detected a spectrum of indels at gRNA-targeted loci in the G1_Tol2-Cas9/IF-gRNA hen and the indels were stably inherited by the G2 progeny. Breeding of the G1_Tol2-Cas9/IF-gRNA hen resulted in up to 10% transgene-free heterozygote IFNAR1 mutants, following null-segregation of the Tol2 insert. The method described here will provide new opportunities for genome editing in chicken and other avian species that lack PGC culture.
Collapse
Affiliation(s)
- Arjun Challagulla
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Kristie A Jenkins
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Terri E O'Neil
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Kirsten R Morris
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Terry G Wise
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Mark L Tizard
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Andrew G D Bean
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Timothy J Doran
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| |
Collapse
|
6
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhang X, Li J, Wang X, Jie Y, Sun C, Zheng J, Li J, Yang N, Chen S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023; 16:2. [PMID: 36617567 PMCID: PMC9827654 DOI: 10.1186/s13072-022-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads. RESULTS We revealed that fadrozole affected the transcriptional activities of several genes, such as DMRT1, SOX9, FOXL2, and CYP19A1, related to sex determination and differentiation, and the expression of a set of gonadal development-related genes, such as FGFR3 and TOX3, by regulating nearby open chromatin regions in sex-reversed chicken embryos. After sexual maturity, the sex-reversed chickens were confirmed to be infertile, and the possible causes of this infertility were further investigated. We found that the structure of the gonads and sperm were greatly deformed, and we identified several promising genes related to spermatogenesis and infertility, such as SPEF2, DNAI1, and TACR3, through RNA-seq. CONCLUSIONS This study provides clear insights into the exploration of potential molecular basis underlying sex differentiation and infertility in sex-reversed chickens and lays a foundation for further research into the sex development of birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuchen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
von Seth J, van der Valk T, Lord E, Sigeman H, Olsen RA, Knapp M, Kardailsky O, Robertson F, Hale M, Houston D, Kennedy E, Dalén L, Norén K, Massaro M, Robertson BC, Dussex N. Genomic trajectories of a near-extinction event in the Chatham Island black robin. BMC Genomics 2022; 23:747. [PMID: 36357860 PMCID: PMC9647977 DOI: 10.1186/s12864-022-08963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, 90014, Oulu, Finland
| | - Remi-André Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17121, Solna, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, Aotearoa, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Dave Houston
- Department of Conservation, Biodiversity Group, Auckland, New Zealand
| | - Euan Kennedy
- Department of Conservation, Science and Capability, Christchurch, New Zealand
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
Altgilbers S, Dierks C, Klein S, Weigend S, Kues WA. Quantitative analysis of CRISPR/Cas9-mediated provirus deletion in blue egg layer chicken PGCs by digital PCR. Sci Rep 2022; 12:15587. [PMID: 36114266 PMCID: PMC9481566 DOI: 10.1038/s41598-022-19861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Primordial germ cells (PGCs), the precursors of sperm and oocytes, pass on the genetic material to the next generation. The previously established culture system of chicken PGCs holds many possibilities for functional genomics studies and the rapid introduction of desired traits. Here, we established a CRISPR/Cas9-mediated genome editing protocol for the genetic modification of PGCs derived from chickens with blue eggshell color. The sequence targeted in the present report is a provirus (EAV-HP) insertion in the 5'-flanking region of the SLCO1B3 gene on chromosome 1 in Araucana chickens, which is supposedly responsible for the blue eggshell color. We designed pairs of guide RNAs (gRNAs) targeting the entire 4.2 kb provirus region. Following transfection of PGCs with the gRNA, genomic DNA was isolated and analyzed by mismatch cleavage assay (T7EI). For absolute quantification of the targeting efficiencies in homozygous blue-allele bearing PGCs a digital PCR was established, which revealed deletion efficiencies of 29% when the wildtype Cas9 was used, and 69% when a high-fidelity Cas9 variant was employed. Subsequent single cell dilutions of edited PGCs yielded 14 cell clones with homozygous deletion of the provirus. A digital PCR assay proved the complete absence of this provirus in cell clones. Thus, we demonstrated the high efficiency of the CRISPR/Cas9 system in introducing a large provirus deletion in chicken PGCs. Our presented workflow is a cost-effective and rapid solution for screening the editing success in transfected PGCs.
Collapse
Affiliation(s)
- Stefanie Altgilbers
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany.
| | - Claudia Dierks
- Department of Breeding and Genetic Resources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Sabine Klein
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Steffen Weigend
- Department of Breeding and Genetic Resources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Wilfried A Kues
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| |
Collapse
|
10
|
Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells. Methods Protoc 2022; 5:mps5010018. [PMID: 35200534 PMCID: PMC8879667 DOI: 10.3390/mps5010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/01/2022] Open
Abstract
Exogenous RNA polymerase III (pol III) promoters are commonly used to express short hairpin RNA (shRNA). Previous studies have indicated that expression of shRNAs using standard pol III promoters can cause toxicity in vivo due to saturation of the native miRNA pathway. A potential way of mitigating shRNA-associated toxicity is by utilising native miRNA processing enzymes to attain tolerable shRNA expression levels. Here, we examined parallel processing of exogenous shRNAs by harnessing the natural miRNA processing enzymes and positioning a shRNA adjacent to microRNA107 (miR107), located in the intron 5 of the Pantothenate Kinase 1 (PANK1) gene. We developed a vector encoding the PANK1 intron containing miR107 and examined the expression of a single shRNA or multiple shRNAs. Using qRT-PCR analysis and luciferase assay-based knockdown assay, we confirmed that miR30-structured shRNAs have resulted in the highest expression and subsequent transcript knockdown. Next, we injected Hamburger and Hamilton stage 14–15 chicken embryos with a vector encoding multiple shRNAs and confirmed that the parallel processing was not toxic. Taken together, this data provides a novel strategy to harness the native miRNA processing pathways for shRNA expression. This enables new opportunities for RNAi based applications in animal species such as chickens.
Collapse
|
11
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
12
|
Wang JX, White MD. Mechanical forces in avian embryo development. Semin Cell Dev Biol 2021; 120:133-146. [PMID: 34147339 DOI: 10.1016/j.semcdb.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Research using avian embryos has led to major conceptual advances in developmental biology, virology, immunology, genetics and cell biology. The avian embryo has several significant advantages, including ready availability and ease of accessibility, rapid development with marked similarities to mammals and a high amenability to manipulation. As mechanical forces are increasingly recognised as key drivers of morphogenesis, this powerful model system is shedding new light on the mechanobiology of embryonic development. Here, we highlight progress in understanding how mechanical forces direct key morphogenetic processes in the early avian embryo. Recent advances in quantitative live imaging and modelling are elaborating upon traditional work using physical models and embryo manipulations to reveal cell dynamics and tissue forces in ever greater detail. The recent application of transgenic technologies further increases the strength of the avian model and is providing important insights about previously intractable developmental processes.
Collapse
Affiliation(s)
- Jian Xiong Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Khwatenge CN, Nahashon SN. Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Front Genet 2021; 12:627714. [PMID: 33679892 PMCID: PMC7933658 DOI: 10.3389/fgene.2021.627714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
CRISPR/Cas9 system genome editing is revolutionizing genetics research in a wide spectrum of animal models in the genetic era. Among these animals, is the poultry species. CRISPR technology is the newest and most advanced gene-editing tool that allows researchers to modify and alter gene functions for transcriptional regulation, gene targeting, epigenetic modification, gene therapy, and drug delivery in the animal genome. The applicability of the CRISPR/Cas9 system in gene editing and modification of genomes in the avian species is still emerging. Up to date, substantial progress in using CRISPR/Cas9 technology has been made in only two poultry species (chicken and quail), with chicken taking the lead. There have been major recent advances in the modification of the avian genome through their germ cell lineages. In the poultry industry, breeders and producers can utilize CRISPR-mediated approaches to enhance the many required genetic variations towards the poultry population that are absent in a given poultry flock. Thus, CRISPR allows the benefit of accessing genetic characteristics that cannot otherwise be used for poultry production. Therefore CRISPR/Cas9 becomes a very powerful and robust tool for editing genes that allow for the introduction or regulation of genetic information in poultry genomes. However, the CRISPR/Cas9 technology has several limitations that need to be addressed to enhance its use in the poultry industry. This review evaluates and provides a summary of recent advances in applying CRISPR/Cas9 gene editing technology in poultry research and explores its potential use in advancing poultry breeding and production with a major focus on chicken and quail. This could aid future advancements in the use of CRISPR technology to improve poultry production.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, IN, United States
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Samuel N. Nahashon
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
15
|
Lee J, Kim DH, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci 2020; 21:ijms21113937. [PMID: 32486292 PMCID: PMC7312999 DOI: 10.3390/ijms21113937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in genome-editing technologies and sequencing of animal genomes enable researchers to generate genome-edited (GE) livestock as valuable animal models that benefit biological researches and biomedical and agricultural industries. As birds are an important species in biology and agriculture, their genome editing has gained significant interest and is mainly performed by using a primordial germ cell (PGC)-mediated method because pronuclear injection is not practical in the avian species. In this method, PGCs can be isolated, cultured, genetically edited in vitro, and injected into a recipient embryo to produce GE offspring. Recently, a couple of GE quail have been generated by using the newly developed adenovirus-mediated method. Without technically required in vitro procedures of the PGC-mediated method, direct injection of adenovirus into the avian blastoderm in the freshly laid eggs resulted in the production of germ-line chimera and GE offspring. As more approaches are available in avian genome editing, avian research in various fields will progress rapidly. In this review, we describe the development of avian genome editing and scientific and industrial applications of GE avian species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-7963
| |
Collapse
|
16
|
Serralbo O, Salgado D, Véron N, Cooper C, Dejardin MJ, Doran T, Gros J, Marcelle C. Transgenesis and web resources in quail. eLife 2020; 9:56312. [PMID: 32459172 PMCID: PMC7286689 DOI: 10.7554/elife.56312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.
Collapse
Affiliation(s)
- Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - David Salgado
- Marseille Medical Genetics (GMGF), Aix Marseille University, Marseille, France
| | - Nadège Véron
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - Caitlin Cooper
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Timothy Doran
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jérome Gros
- Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Abstract
Animal husbandry is believed to predate farming of crops, and remains a core component of most agricultural systems. Historic breeding strategies were based largely on visual observation, crossing animals that were perceived to display enhanced merit. Advances in sequencing capacity coupled with reduced costs have allowed genomic selection tools to deliver significant contribution to breeding regimes. The application of genome editors to make specific changes to livestock genomes has the potential to deliver additional benefits.
Collapse
Affiliation(s)
- Simon Lillico
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, EH25 9RG, UK.
| |
Collapse
|
18
|
Qin X, Xiao N, Xu Y, Yang F, Wang X, Hu H, Liu Q, Cui K, Tang X. Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system. 3 Biotech 2019; 9:454. [PMID: 31832301 DOI: 10.1007/s13205-019-1966-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, efficient knock-in (KI) of human epidermal growth factor (hEGF) cDNA at the ovalbumin (OV) locus in cultured chicken cells was achieved using adenovirus as a delivery for CRISPR/Cas9 elements and optimizing donor vector construction. The strategy of recruiting donor DNA to the insertion site further improved the KI efficiency. The inserted hEGF cDNA can expressed in primary oviduct cells and secreted hEGF promoted proliferation of Hela cells. Moreover, we achieved efficient KI in blastoderm cells without altering their induction in vitro and obtained germline chimeric KI chicken embryos by transplanting KI blastoderm cells as well as injecting adenovirus directly, in vivo. Our results provided an efficient KI method for chicken cells and embryos, and lay the foundation for more convenient production of KI chicken at the OV locus, which will promote the development of oviduct-specific bioreactor.
Collapse
Affiliation(s)
- Xiaolian Qin
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Ning Xiao
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Yu Xu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Fengshuo Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi, 530004 People's Republic of China
| | - Xiaoli Wang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Hao Hu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Qingyou Liu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Kuiqing Cui
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Xiaochuan Tang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| |
Collapse
|
19
|
Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019; 10:46. [PMID: 31205688 PMCID: PMC6560896 DOI: 10.1186/s40104-019-0355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.
Collapse
Affiliation(s)
- Filipp Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Martin Ptacek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Ludek Stadnik
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| |
Collapse
|