1
|
Lv H, Liu L, Zou W, Yang Y, Li Y, Yang S, Liang A, Yang L. Isorhamnetin Ameliorates Non-Esterified Fatty Acid-Induced Apoptosis, Lipid Accumulation, and Oxidative Stress in Bovine Endometrial Epithelial Cells via Inhibiting the MAPK Signaling Pathway. Antioxidants (Basel) 2025; 14:156. [PMID: 40002343 PMCID: PMC11852151 DOI: 10.3390/antiox14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows.
Collapse
Affiliation(s)
- Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Lijuan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Wenna Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Ying Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Yuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Shengji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Ping S, Xuehu M, Chunli H, Xue F, Yanhao A, Yun M, Yanfen M. Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows. Genomics 2024; 116:110927. [PMID: 39187030 DOI: 10.1016/j.ygeno.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Ketosis-a metabolic state characterized by elevated levels of ketone bodies in the blood or urine-reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR-key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively-can be used as key marker genes for determining the early onset of ketosis in dairy cows.
Collapse
Affiliation(s)
- Sha Ping
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Xuehu
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Hu Chunli
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Feng Xue
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - An Yanhao
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yun
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yanfen
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Zhao H, Li L, Tan J, Wang Y, Zhang A, Zhao Y, Jiang L. Multi-Omics Reveals Disrupted Immunometabolic Homeostasis and Oxidative Stress in Adipose Tissue of Dairy Cows with Subclinical Ketosis: A Sphingolipid-Centric Perspective. Antioxidants (Basel) 2024; 13:614. [PMID: 38790719 PMCID: PMC11118941 DOI: 10.3390/antiox13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ketosis, especially its subclinical form, is frequently observed in high-yielding dairy cows and is linked to various diseases during the transition period. Although adipose tissue plays a significant role in the development of metabolic disorders, its exact impact on the emergence of subclinical ketosis (SCK) is still poorly understood. The objectives of this study were to characterize and compare the profiling of transcriptome and lipidome of blood and adipose tissue between SCK and healthy cows and investigate the potential correlation between metabolic disorders and lipid metabolism. We obtained blood and adipose tissue samples from healthy cows (CON, n = 8, β-hydroxybutyric acid concentration < 1.2 mmol/L) and subclinical ketotic cows (SCK, n = 8, β-hydroxybutyric acid concentration = 1.2-3.0 mmol/L) for analyzing biochemical parameters, transcriptome, and lipidome. We found that serum levels of nonesterified fatty acids, malonaldehyde, serum amyloid A protein, IL-1β, and IL-6 were higher in SCK cows than in CON cows. Levels of adiponectin and total antioxidant capacity were higher in serum and adipose tissue from SCK cows than in CON cows. The top enriched pathways in whole blood and adipose tissue were associated with immune and inflammatory responses and sphingolipid metabolism, respectively. The accumulation of ceramide and sphingomyelin in adipose tissue was paralleled by an increase in genes related to ceramide biosynthesis, lipolysis, and inflammation and a decrease in genes related to ceramide catabolism, lipogenesis, adiponectin production, and antioxidant enzyme systems. Increased ceramide concentrations in blood and adipose tissue correlated with reduced insulin sensitivity. The current results indicate that the lipid profile of blood and adipose tissue is altered with SCK and that certain ceramide species correlate with metabolic health. Our research suggests that disruptions in ceramide metabolism could be crucial in the progression of SCK, exacerbating conditions such as insulin resistance, increased lipolysis, inflammation, and oxidative stress, providing a potential biomarker of SCK and a novel target for nutritional manipulation and pharmacological therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (H.Z.); (L.L.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (H.Z.); (L.L.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
4
|
Il Y, Il D, Zabolotnykh M, Savenkova I, Nurzhanova K, Zhantleuov D, Kozhebayev B, Akhmetova B, Satiyeva K, Kurmangali L. Changes in blood biochemical parameters in highly productive cows with ketosis. Vet World 2024; 17:1130-1138. [PMID: 38911074 PMCID: PMC11188885 DOI: 10.14202/vetworld.2024.1130-1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Biochemical blood testing is the main diagnostic indicator of the clinical condition of highly productive animals and a method of determining changes in metabolic disorders. This study focuses on metabolic changes (ketosis), which are of the utmost importance in the assessment of the health status of animals, as well as differences in intergroup characteristics. The main focus of this study is to demonstrate the influence of subclinical ketosis in highly productive cows on changes in biochemical blood parameters during different physiological periods to further prevent this disease, adjust feeding rations, and prevent premature culling of animals. This study aimed to evaluate and establish changes in the biochemical status dynamics of highly productive cows with metabolic disorders in an industrial livestock complex. Materials and Methods Blood samples were systematically collected from highly productive cows of the Simmental breed (n = 60) and served as the primary material for subsequent analyses. Each methodological step was designed to ensure evaluation of the metabolic changes associated with post-calving adjustments in highly productive dairy cows. This study employed a comprehensive approach integrating clinical assessments, laboratory analyses, biochemical evaluations, instrumental measurements, and statistical analyses. Results A biochemical blood test showed that the number of ketone bodies in the experimental group exceeded the norm, varied depending on the physiological state of the animals, and ranged from 0.89 to 1.45 mmol/L. At 10 days after calving, the highest indicator was 1.45 ± 0.05 mmol/L. This indicator was 1.05 mmol/L higher than that in the control group and exceeded the norm by 0.95. Conclusion Excess ketone bodies in the blood of animals led to accumulation in urine and milk, indicating a disturbance in metabolic processes in the body and a decrease in the quality of animal husbandry products. The sample size and the focus on a single breed from one geographical location may limit the generalizability of the findings. Further research should explore the mechanistic bases of ketosis development, potentially integrating genomic and proteomic approaches to understand the genetic predispositions and molecular pathways involved.
Collapse
Affiliation(s)
- Yelena Il
- Department of Food Security, Agrotechnological Faculty, Manash Kozybaev North Kazakhstan University, Petropavlovsk, Kazakhstan
| | - Dmitrii Il
- Department of Food Security, Agrotechnological Faculty, Manash Kozybaev North Kazakhstan University, Petropavlovsk, Kazakhstan
| | - Mikhail Zabolotnykh
- Department of Veterinary and Sanitary Expertise of Livestock Product and Hygiene of Farm Animals, Faculty of Veterinary Medicine, P.A. Stolypin Omsk State Agrarian University, Omsk, Russian Federation
| | - Inna Savenkova
- Department of Agronomy and Forestry, Agrotechnological Faculty, Manash Kozybaev North Kazakhstan University, Petropavlovsk, Kazakhstan
| | - Kulsara Nurzhanova
- Department of Agriculture and Bioresources, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University of Semey, Semey, Kazakhstan
| | - Daniyar Zhantleuov
- Department of Livestock, North Kazakhstan Research Institute of Agriculture, Beskol, Kazakhstan
| | - Bolatpek Kozhebayev
- Department of Agriculture and Bioresources, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University of Semey, Semey, Kazakhstan
| | - Balnur Akhmetova
- Department of Agriculture and Bioresources, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University of Semey, Semey, Kazakhstan
| | - Kaliya Satiyeva
- Department of Agriculture and Bioresources, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University of Semey, Semey, Kazakhstan
| | - Lailim Kurmangali
- Department of Agriculture and Bioresources, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University of Semey, Semey, Kazakhstan
| |
Collapse
|
5
|
Luo Z, Du Z, Huang Y, Zhou T, Wu D, Yao X, Shen L, Yu S, Yong K, Wang B, Cao S. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia. mSystems 2024; 9:e0002324. [PMID: 38501812 PMCID: PMC11019918 DOI: 10.1128/msystems.00023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as β-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenlong Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Alemu TW, Schuermann Y, Madogwe E, St Yves A, Dicks N, Bohrer R, Higginson V, Mondadori RG, de Macedo MP, Taibi M, Baurhoo B, Bordignon V, Duggavathi R. Severe body condition loss lowers hepatic output of IGF1 with adverse effects on the dominant follicle in dairy cows. Animal 2024; 18:101063. [PMID: 38237478 DOI: 10.1016/j.animal.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 02/26/2024] Open
Abstract
The severe loss of body condition score (BCS) during the early lactation period has been associated with infertility in cows. However, the mechanisms are not fully understood. The aim of this study was to examine the effect of BCS loss on liver health, and ovarian functions in cows during early lactation. Retrospectively multiparous cows from two farms were categorized based on units of BCS (1-5 scale) loss as Moderate (MOD, <0.75 units; n = 11) or Severe (SEV, ≥0.75 units; n = 9) loss groups. From Weeks -3 to 7, relative to calving, MOD and SEV cows lost on average 0.4 and 1.0-unit BCS, respectively. All data except hepatic transcriptomes were analyzed with PROC MIXED procedure of SAS. The plasma concentration of non-esterified fatty acids at Week 0 and 1, ß-hydroxy butyrate at Week 1, and γ-glutamyl transferase at Weeks 1 and 7 relative to calving were higher in SEV cows. Hepatic transcriptome analysis showed that 1 186 genes were differentially expressed in SEV (n = 3) compared to MOD (n = 3) cows at Week 7 after calving. Pathway analysis revealed that significant DEGs in SEV cows enriched in lipid metabolisms including, lipid metabolic process, ether lipid metabolism, fatty acid beta-oxidation, fatty acid biosynthetic process, fatty acid metabolic process, fat digestion and absorption, linoleic acid metabolism, alpha-linolenic acid metabolism. The impaired liver function in SEV cows was associated with 1.5-fold reduction of hepatic IGF1 gene expression and lower serum IGF1 concentrations. At the ovarian level, SEV cows had lower IGF1 concentration in the follicular fluid of the dominant follicle of the synchronized follicular wave compared to that of MOD cows at 7 weeks after calving. Further, the follicular fluid concentration of estradiol-17β was lower in SEV cows along with lower transcript abundance of genes from granulosa cells associated with dominant follicle competence, including CYP19A1, NR5A2, IGF1, and LHCGR. These data show that SEV loss of BCS during early lactation leading up to the planned start of breeding is associated with liver dysfunction, including lower IGF1 secretion, and impaired function of the dominant follicle in the ovary.
Collapse
Affiliation(s)
- Teshome Wondie Alemu
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Audrey St Yves
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Rodrigo Bohrer
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Valerie Higginson
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Rafael G Mondadori
- Department of Morphology, Federal University of Pelotas, Capão do Leão, Brazil
| | | | - Milena Taibi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Bushansingh Baurhoo
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Bélisle Nutrition Solutions Inc., Saint-Mathias-sur-Richelieu, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
7
|
Zhao Y, Zhao H, Li L, Yu S, Liu M, Jiang L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: driver or passenger? Front Immunol 2024; 14:1321597. [PMID: 38274826 PMCID: PMC10808295 DOI: 10.3389/fimmu.2023.1321597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Dairy cows must undergo profound metabolic and endocrine adaptations during their transition period to meet the nutrient requirements of the developing fetus, parturition, and the onset of lactation. Insulin resistance in extrahepatic tissues is a critical component of homeorhetic adaptations in periparturient dairy cows. However, due to increased energy demands at calving that are not followed by a concomitant increase in dry matter intake, body stores are mobilized, and the risk of metabolic disorders dramatically increases. Sphingolipid ceramides involved in multiple vital biological processes, such as proliferation, differentiation, apoptosis, and inflammation. Three typical pathways generate ceramide, and many factors contribute to its production as part of the cell's stress response. Based on lipidomic profiling, there has generally been an association between increased ceramide content and various disease outcomes in rodents. Emerging evidence shows that ceramides might play crucial roles in the adaptive metabolic alterations accompanying the initiation of lactation in dairy cows. A series of studies also revealed a negative association between circulating ceramides and systemic insulin sensitivity in dairy cows experiencing severe negative energy balance. Whether ceramide acts as a driver or passenger in the metabolic stress of periparturient dairy cows is an unknown but exciting topic. In the present review, we discuss the potential roles of ceramides in various metabolic dysfunctions and the impacts of their perturbations. We also discuss how this novel class of bioactive sphingolipids has drawn interest in extrahepatic tissue insulin resistance and immunometabolic disorders in transition dairy cows. We also discuss the possible use of ceramide as a new biomarker for predicting metabolic diseases in cows and highlight the remaining problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Chang R, Jia H, Dong Z, Xu Q, Liu L, Majigsuren Z, Batbaatar T, Xu C, Yang Q, Sun X. Free Fatty Acids Induce Apoptosis of Mammary Epithelial Cells of Ketotic Dairy Cows via the Mito-ROS/NLRP3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12645-12656. [PMID: 37585786 DOI: 10.1021/acs.jafc.3c02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Early lactation increases metabolic stress in ketotic dairy cows, leading to mitochondrial damage, apoptosis, and inflammatory response in mammary epithelial cells. The pyrin domain 3 (NLRP3) pathway involving the mitochondrial reactive oxygen species (Mito-ROS)-induced nucleotide-binding oligomerization domain-like receptor has been recognized as a key mechanism in this inflammatory response and cell apoptosis. This study aimed to elucidate the underlying regulatory mechanism of Mito-ROS-NLRP3 pathway-mediated mammary epithelial cell apoptosis in dairy cows with ketosis. Mitochondrial damage and cellular apoptotic program and NLRP3 inflammasome activation were observed in the mammary gland of ketotic cows. Similar damage was detected in MAC-T cells treated with exogenous fatty acids (FFAs). However, NLRP3 inhibitor MCC950 pretreatment or Mito-ROS scavenging by MitoTEMPO attenuated apoptosis in FFA-induced MAC-T cells by inhibiting the NLRP3 inflammasome pathway. These findings reveal that the Mito-ROS-NLRP3 pathway activation is a potent mechanism underlying mammary epithelial cell apoptosis in response to metabolic stress in ketotic dairy cows, which further contributes to reduced milk yield.
Collapse
Affiliation(s)
- Renxu Chang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zolzaya Majigsuren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar 17024, Mongolia
| | - Tugsjargal Batbaatar
- State Central Veterinary Laboratory, P. O. Box 53/33, Zaisan, Ulaanbaatar 210153, Mongolia
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
9
|
Lopreiato V, Alharthi AS, Liang Y, Elolimy AA, Bucktrout R, Socha MT, Trevisi E, Loor JJ. Influence of Cobalt Source, Folic Acid, and Rumen-Protected Methionine on Performance, Metabolism, and Liver Tissue One-Carbon Metabolism Biomarkers in Peripartal Holstein Cows. Animals (Basel) 2023; 13:2107. [PMID: 37443904 DOI: 10.3390/ani13132107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Vitamin B12 plays a role in the remethylation of homocysteine to Met, which then serves as a substrate for Met adenosyltransferase (MAT) to synthesize S-adenosylmethionine (SAM). We investigated effects of feeding two cobalt sources [Co-glucoheptonate (CoPro) or CoPectin, Zinpro Corp.], an experimental ruminally-available source of folic acid (FOA), and rumen-protected Met (RPM) on performance and hepatic one-carbon metabolism in peripartal Holstein cows. From -30 to 30 d around calving, 72 multiparous cows were randomly allocated to: CoPro, CoPro + FOA, CoPectin + FOA, or CoPectin + FOA + RPM. The Co treatments delivered 1 mg Co/kg of DM (CoPro or CoPectin), each FOA group received 50 mg/d FOA, and RPM was fed at 0.09% of DM intake (DMI). Milk yield and DMI were not affected. Compared with other groups, the percentage of milk protein was greater after the second week of lactation in CoPectin + FOA + RPM. Compared with CoPro or CoPro + FOA, feeding CoPectin + FOA or CoPectin + FOA + RPM led to a greater activity of MAT at 7 to 15 d postcalving. For betaine-homocysteine S-methyltransferase, CoPro together with CoPectin + FOA + RPM cows had greater activity at 7 and 15 d than CoPro + FOA. Overall, supplying FOA with CoPectin or CoPectin plus RPM may enhance S-adenosylmethionine synthesis via MAT in the liver after parturition. As such, these nutrients may impact methylation reactions and liver function.
Collapse
Affiliation(s)
- Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, snc, 98168 Messina, Italy
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Ahmed A Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ryan Bucktrout
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Arfuso F, Minuti A, Liotta L, Giannetto C, Trevisi E, Piccione G, Lopreiato V. Stress and inflammatory response of cows and their calves during peripartum and early neonatal period. Theriogenology 2023; 196:157-166. [PMID: 36423510 DOI: 10.1016/j.theriogenology.2022.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Stress, inflammatory response, and their relationship were investigated in Simmental cows during the transition period (N = 8; 5 multiparous and 3 primiparous) and in their calves (N = 8; 5 heifers and 3 bulls). From cows, blood was collected at days -21 (±4), 0, +1, +7, and +21 days relative to calving. From calves, blood was collected after birth before colostrum intake (0) and then at 1, 7, and 15 days of age. Cortisol, Interleukin 6 (IL-6) and haptoglobin concentration was assessed by ELISA technique; white blood cells (WBC) were assessed using an ADVIA 2120 Hematology System machine. One-way ANOVA showed an effect of time for all the investigated parameters (P < 0.001) except for lymphocytes in peripartal cows. At calving and 1 d after, cortisol concentration was negatively correlated with levels of IL-6, WBC, and monocytes, whereas levels of IL-6 were positively correlated with WBC, neutrophils, and monocytes count. Cortisol, IL-6, haptoglobin, WBC and all leukocyte populations were affected by the age of neonatal calves (P < 0.001) except for neutrophils. A negative correlation between cortisol and IL-6, neutrophils, monocytes and haptoglobin was found at 15 days of age. A positive correlation between IL-6 and haptoglobin at day 15 of age, and with neutrophils and monocytes at days 7 and 15 of age was found. A positive correlation was obtained between cortisol levels measured in cows around calving and those obtained in calves after birth before colostrum intake (r = 0.83), and between IL-6 concentrations obtained from cows at calving and 1 d after and those obtained in calves at day 1 of age, after the colostrum intake (r = 0.93 and 0.79, respectively). The study suggests that immune function of peripartal cows is in an active state and that, in addition to other well-known factors driving the changes of parameters herein investigated, cortisol could have a role in the immune-modulatory adjustment during peripartum in cows. Furthermore, it can be hypothesized that cortisol is transferred from the cow to newborn calf through the placenta only and not through colostrum, whereas IL-6 levels in calves during the 24 h after birth seem to be influenced by IL-6 values measured in cows around calving due to its transfer through colostrum.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy.
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DiANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168, Messina, Italy
| |
Collapse
|
11
|
Shen Y, Kim IM, Weintraub NL, Tang Y. Identification of the metabolic state of surviving cardiomyocytes in the human infarcted heart by spatial single-cell transcriptomics. CARDIOLOGY PLUS 2023; 8:18-26. [PMID: 37187809 PMCID: PMC10180026 DOI: 10.1097/cp9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
The metabolic status of surviving cardiomyocytes (CM) in the myocardial tissues of patients who sustained myocardial infarction (MI) is largely unknown. Spatial single-cell RNA-sequencing (scRNA-seq) is a novel tool that enables the unbiased analysis of RNA signatures within intact tissues. We employed this tool to assess the metabolic profiles of surviving CM in the myocardial tissues of patients post-MI. Methods A spatial scRNA-seq dataset was used to compare the genetic profiles of CM from patients with MI and control patients; we analyzed the metabolic adaptations of surviving CM within the ischemic niche. A standard pipeline in Seurat was used for data analysis, including normalization, feature selection, and identification of highly variable genes using principal component analysis (PCA). Harmony was used to remove batch effects and integrate the CM samples based on annotations. Uniform manifold approximation and projection (UMAP) was used for dimensional reduction. The Seurat "FindMarkers" function was used to identify differentially expressed genes (DEGs), which were analyzed by the Gene Ontology (GO) enrichment pathway. Finally, the scMetabolism R tool pipeline with parameters method = VISION (Vision is a flexible system that utilizes a high-throughput pipeline and an interactive web-based report to annotate and explore scRNA-seq datasets in a dynamic manner) and metabolism.type = Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to quantify the metabolic activity of each CM. Results Analysis of spatial scRNA-seq data showed fewer surviving CM in infarcted hearts than in control hearts. GO analysis revealed repressed pathways in oxidative phosphorylation, cardiac cell development, and activated pathways in response to stimuli and macromolecular metabolic processes. Metabolic analysis showed downregulated energy and amino acid pathways and increased purine, pyrimidine, and one-carbon pool by folate pathways in surviving CM. Conclusions Surviving CM within the infarcted myocardium exhibited metabolic adaptations, as evidenced by the downregulation of most pathways linked to oxidative phosphorylation, glucose, fatty acid, and amino acid metabolism. In contrast, pathways linked to purine and pyrimidine metabolism, fatty acid biosynthesis, and one-carbon metabolism were upregulated in surviving CM. These novel findings have implications for the development of effective strategies to improve the survival of hibernating CM within the infarcted heart.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-man Kim
- Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Neal L. Weintraub
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Xu W, Grindler S, Kenéz Á, Dänicke S, Frahm J, Huber K. Changes of the liver metabolome following an intravenous lipopolysaccharide injection in Holstein cows supplemented with dietary carnitine. J Anim Sci Biotechnol 2022; 13:94. [PMID: 35945561 PMCID: PMC9364515 DOI: 10.1186/s40104-022-00741-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Carnitine facilitates the flux of long-chain fatty acids for hepatic mitochondrial beta-oxidation, which acts to ameliorate the negative energy balance commonly affecting high-yielding dairy cows. Inflammation triggered by lipopolysaccharide (LPS) load can however pose a challenge to the metabolic integrity via the expression of pro-inflammatory mediators, leading to immune system activation and respective metabolic alterations. The effect of enhanced carnitine availability on hepatic metabolome profiles during an inflammatory challenge has not yet been determined in dairy cows. Herein, Holstein cows were supplemented with 25 g/d rumen-protected carnitine from 42 d prepartum until 126 d postpartum (n = 16) or assigned to the control group with no supplementation during the same period (n = 14). We biopsied the liver of the cows before (100 d postpartum) and after (112 d postpartum) an intravenous injection of 0.5 µg/kg LPS. Liver samples were subjected to a targeted metabolomics analysis using the AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria). Results Multivariate statistical analyses revealed that hepatic metabolome profiles changed in relation to both the carnitine supplementation and the LPS challenge. Comparing the metabolite profiles on 100 d, carnitine increased the concentration of short- and long-chain acyl-carnitines, which may be explained by an enhanced mitochondrial fatty acid shuttle and hence greater energy availability. The LPS injection affected hepatic metabolite profiles only in the carnitine supplemented group, particularly altering the concentration of biogenic amines. Conclusions Our results point to interactions between an acute hepatic inflammatory response and biogenic amine metabolism, depending on energy availability. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00741-z.
Collapse
Affiliation(s)
- Wei Xu
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing, 100097, China.,Department of Biosystems, Biosystems Technology Cluster, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Leuven, KU, Belgium
| | - Sandra Grindler
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Block 1, 4/F, To Yuen Building, 31 To Yuen Street, Kowloon, Hong Kong SAR, China.
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), 38116, Brunswick, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), 38116, Brunswick, Germany
| | - Korinna Huber
- Institute of Animal Science, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
13
|
Yu H, Fan M, Chen X, Jiang X, Loor JJ, Aboragah A, Zhang C, Bai H, Fang Z, Shen T, Wang Z, Song Y, Li X, Liu G, Li X, Du X. Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues. J Dairy Sci 2022; 105:6997-7010. [PMID: 35688731 DOI: 10.3168/jds.2021-21287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood β-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 μg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of β-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of β-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiying Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiuhuan Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Hongxu Bai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Taiyu Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
14
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
15
|
Loor JJ. Nutrigenomics in livestock: potential role in physiological regulation and practical applications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Casey T, Suarez-Trujillo AM, McCabe C, Beckett L, Klopp R, Brito L, Rocha Malacco VM, Hilger S, Donkin SS, Boerman J, Plaut K. Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiol Genomics 2021; 53:441-455. [PMID: 34643103 DOI: 10.1152/physiolgenomics.00028.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Conor McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Linda Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Susan Hilger
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
17
|
Novel Facets of the Liver Transcriptome Are Associated with the Susceptibility and Resistance to Lipid-Related Metabolic Disorders in Periparturient Holstein Cows. Animals (Basel) 2021; 11:ani11092558. [PMID: 34573524 PMCID: PMC8470208 DOI: 10.3390/ani11092558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Energy and nutrient demands of the early lactation period can result in the development of metabolic disorders, such as ketosis and fatty liver, in dairy cows. Variability in the incidence of these disorders suggests that some cows have an ability to adapt. The objective of this study was to discover differences in liver gene expression that are associated with a cow’s susceptibility (disposition to disorder during typical conditions) or resistance (disposition to disorder onset and severity when presented a challenge) to metabolic disorders. Cows in a control treatment and a ketosis induction protocol treatment were retrospectively grouped into susceptibility and resistance groups, respectively, by a machine learning algorithm using lipid biomarker concentrations. Whole-transcriptome RNA sequencing was performed on liver samples from these cows. More susceptible cows had lower expression of glutathione metabolism genes, while less resistant cows had greater expression of eicosanoid-metabolism-related genes. Additionally, differentially expressed genes suggested a role for immune-response-related genes in conferring susceptibility and resistance to metabolic disorders. The overall inferred metabolism suggests that responses to oxidative stress may determine susceptibility and resistance to metabolic disorders, with novel implications for immunometabolism. Abstract Lipid-related metabolic disorders (LRMD) are prevalent in early lactation dairy cows, and have detrimental effects on productivity and health. Our objectives were to identify cows resistant or susceptible to LRMD using a ketosis induction protocol (KIP) to discover differentially expressed liver genes and metabolic pathways associated with disposition. Clustering cows based on postpartum lipid metabolite concentrations within dietary treatments identified cows more or less susceptible (MS vs. LS) to LRMD within the control treatment, and more or less resistant (MR vs. LR) within the KIP treatment. Whole-transcriptome RNA sequencing was performed on liver samples (−28, +1, and +14 days relative to calving) to assess differential gene and pathway expression (LS vs. MS; MR vs. LR; n = 3 cows per cluster). Cows within the MS and LR clusters had evidence of greater blood serum β-hydroxybutyrate concentration and liver triglyceride content than the LS and MR clusters, respectively. The inferred metabolism of differentially expressed genes suggested a role of immune response (i.e., interferon-inducible proteins and major histocompatibility complex molecules). Additionally, unique roles for glutathione metabolism and eicosanoid metabolism in modulating susceptibility and resistance, respectively, were implicated. Overall, this research provides novel insight into the role of immunometabolism in LRMD pathology, and suggests the potential for unique control points for LRMD progression and severity.
Collapse
|
18
|
Schären M, Riefke B, Slopianka M, Keck M, Gruendemann S, Wichard J, Brunner N, Klein S, Snedec T, Theinert KB, Pietsch F, Rachidi F, Köller G, Bannert E, Spilke J, Starke A. Aspects of transition cow metabolomics-Part III: Alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes. J Dairy Sci 2021; 104:9245-9262. [PMID: 34024605 DOI: 10.3168/jds.2020-19056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
The liver plays a central role in the postpartum (PP) energy metabolism of the transition dairy cow; however, studies describing the liver metabolome during this period were lacking. The aim of the presented study was therefore to compare the alterations in the liver and blood metabolome of transition dairy cows. For this purpose, an on-farm trial with 80 German Holstein cows (mean lactation number: 3.9; range: 2-9) was performed, with thorough documentation of clinical traits and clinical chemistry, as well as production data. Liver biopsies and blood samples were collected at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), d 7 (7, 4-13) and 28 (28, 23-34; mean, earliest-latest) PP for targeted mass spectroscopy-based metabolomics analysis using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Statistical analysis was performed using multivariate (partial least squares discriminant analysis) as well as univariate methods (linear mixed model). Multivariate data analysis of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in the liver metabolome profile between AP and PP). In metabotype C, an increase of almost all acylcarnitines, lysophosphatidylcholines (lysoPC), sphingomyelins, and some phosphatidylcholines (PC, mainly at 7 d PP) was observed after calving. In contrast to metabotype C, the clinical data of the metabotype B animals indicated a higher PP lipomobilization and occurrence of transition cow diseases. The liver metabolome profile of these animals most likely mirrors a failure of adaptation to the PP state. This strong occurrence of metabotypes was much less pronounced in the blood metabolome. Additionally, differences in metabolic patterns were observed across the transition period when comparing liver and blood matrices (e.g., in different biogenic amines, acylcarnitines and sphingolipids). In summary, the blood samples at 7 d PP showed lower acylcarnitines and PC, with minor alterations and a heterogeneous pattern in AA, biogenic amines, and sphingomyelins compared with 14 d AP. In contrast to 7 d PP, the blood samples at 28 PP revealed an increase in several AA, lysoPC, PC, and sphingomyelins in comparison to the AP state, irrespective of the metabotype. In the liver biopsies metabotype B differed from metabotype C animals ante partum by following metabolites: higher α aminoadipic acid, lower AA, serotonin, taurine, and symmetric dimethylarginine levels, lower or higher concentrations of certain acylcarnitines (higher: C2, C3, C5, C4:1; lower: C12:1, C14:1-OH, C16:2), and lower lysoPC (a C16:0, C18:0, C20:3, C20:4) and hexose levels. In blood samples, fewer differences were observed, with lower serotonin, acylcarnitine C16:2, lysoPC (a C16:0, C17:0, C18:0 and C18:1), PC aa C38:0, and PC ae C42:2. The results show that the use of only the blood metabolome to assess liver metabolism may be hampered by the fact that blood profiles are influenced by the metabolism of many organs, and metabolomics analysis from liver biopsies is a more suitable method to identify distinct metabotypes. Future studies should investigate the stability and reproducibility of the metabotype and phenotypes observed, and the possible predictive value of the metabolites already differing AP between metabotype B and C.
Collapse
Affiliation(s)
- M Schären
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - B Riefke
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Slopianka
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Keck
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - S Gruendemann
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - J Wichard
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - N Brunner
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - S Klein
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - T Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - K B Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Rachidi
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - G Köller
- Laboratory of Large Animal Clinics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - E Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - J Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agricultural and Nutritional Sciences, Martin-Luther University, Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06108 Halle (Saale), Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Pascottini OB, De Koster J, Van Nieuwerburgh F, Van Poucke M, Peelman L, Fievez V, Leroy JLMR, Opsomer G. Effect of overconditioning on the hepatic global gene expression pattern of dairy cows at the end of pregnancy. J Dairy Sci 2021; 104:8152-8163. [PMID: 33896624 DOI: 10.3168/jds.2020-19302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
Overconditioning is a risk factor for upregulated pre- and postpartum fat mobilization. Therefore, we hypothesized that overconditioning at the end of pregnancy leads to the accumulation of lipids in the liver and modifications of the hepatic gene expression pattern. The aim of this study was to evaluate the effect of normal- versus overconditioning on the hepatic transcriptomic profile of dairy cows at the end of pregnancy. Ten dry multiparous Holstein cows were killed 2 wk before expected calving. Body condition score (BCS) and backfat thickness (BFT) were evaluated, and blood samples for nonesterified fatty acids (NEFA) were taken before cows were killed. After cows were killed, liver biopsy samples were collected for further assessment of total lipids and RNA sequencing. Five cows were classified as normal-conditioned (median BCS = 3, range 2.75-3.5) and 5 as overconditioned (median BCS = 4, range 4-5). Regression models confirmed that normal-conditioned cows had lower BFT (1.29 ± 0.29 cm; least squares means ± standard error) and serum NEFA (0.16 ± 0.04 mmol/L) in comparison to overconditioned cows (3.14 ± 0.43 cm and 0.38 ± 0.07 mmol/L for BFT and NEFA, respectively). Total liver lipid percentage tended to be lower in normal- versus overconditioned cows (4.63 ± 0.40% and 6.06 ± 0.44%, respectively). In comparison to the mean liver lipid percentage of the normal- and overconditioned cows, 1 overconditioned cow had a relatively low (5.21%) and 1 normal-conditioned cow had a relatively high (6.07%) liver lipid percentage. Differentially expressed genes analysis (edgeR quasi-likelihood method) showed that normal-conditioned cows presented 11 upregulated and 12 downregulated genes in comparison to overconditioned cows. Linear discriminant analysis effects size revealed 133 differentially expressed genes between normal- versus overconditioned cows. Notably, the liver of normal-conditioned cows had upregulated genes associated with liver functionality (ALB, SELENOP, IGF1, and IGF2). On the other hand, overconditioned cows had upregulated genes associated with the acute-phase response (C3, HPX, and, LBP). High basal lipolysis in overconditioned cows at the end of pregnancy increased liver lipid content, and this may alter the hepatic gene expression pattern to a pro-inflammatory state.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
| | - J De Koster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - M Van Poucke
- Laboratory for Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - L Peelman
- Laboratory for Animal Genetics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - V Fievez
- LANUPRO, Campus Coupure, building F, first floor, Coupure Links 653, 9000 Gent, Belgium
| | - J L M R Leroy
- Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Pralle RS, Erb SJ, Holdorf HT, White HM. Greater liver PNPLA3 protein abundance in vivo and in vitro supports lower triglyceride accumulation in dairy cows. Sci Rep 2021; 11:2839. [PMID: 33531537 PMCID: PMC7854614 DOI: 10.1038/s41598-021-82233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fatty liver syndrome is a prevalent metabolic disorder in peripartum dairy cows that unfavorably impacts lactation performance and health. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipase that plays a central role in human non-alcoholic fatty liver disease etiology but has received limited attention in bovine fatty liver research. Thus, we investigated the relationship between tissue PNPLA3 expression and liver triglyceride accumulation in vivo via a ketosis induction protocol in multiparous dairy cows peripartum, as well as in vitro via small interfering RNA knockdown of PNPLA3 mRNA expression in bovine primary hepatocytes. Results demonstrated a negative association (P = 0.04) between liver PNPLA3 protein abundance and liver triglyceride content in peripartum dairy cows, while adipose PNPLA3 protein abundance was not associated with liver triglyceride content or blood fatty acid concentration. Knockdown of PNPLA3 mRNA resulted in reduced PNPLA3 protein abundance (P < 0.01) and greater liver triglyceride content (P < 0.01). Together, these results suggest greater liver PNPLA3 protein abundance may directly limit liver triglyceride accumulation peripartum, potentially preventing bovine fatty liver or accelerating recovery from fatty liver syndrome.
Collapse
Affiliation(s)
- Ryan S Pralle
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Sophia J Erb
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Henry T Holdorf
- Department of Dairy Science, University of Wisconsin-Madison, Madison, 53706, USA
| | - Heather M White
- Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Drive, Rm 934B, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
Wu ZL, Chen SY, Hu S, Jia X, Wang J, Lai SJ. Metabolomic and Proteomic Profiles Associated With Ketosis in Dairy Cows. Front Genet 2020; 11:551587. [PMID: 33391334 PMCID: PMC7772412 DOI: 10.3389/fgene.2020.551587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Ketosis is a common metabolic disease in dairy cows during early lactation. However, information about the metabolomic and proteomic profiles associated with the incidence and progression of ketosis is still limited. In this study, an integrated metabolomics and proteomics approach was performed on blood serum sampled from cows diagnosed with clinical ketosis (case, ≥ 2.60 mmol/L plasma β-hydroxybutyrate; BHBA) and healthy controls (control, < 1.0 mmol/L BHBA). Samples were taken 2 weeks before parturition and 2 weeks after parturition from 19 animals (nine cases, 10 controls). All serum samples (n = 38) were subjected to Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomic analysis, and 20 samples underwent Data-Independent Acquisition (DIA) LC-MS based proteomic analysis. A total of 97 metabolites and 540 proteins were successfully identified, and multivariate analysis revealed significant differences in both metabolomic and proteomic profiles between cases and controls. We investigated clinical ketosis-associated metabolomic and proteomic changes using statistical analyses. Correlation analysis of statistically significant metabolites and proteins showed 78 strong correlations (correlation coefficient, R ≥ 0.7) between 38 metabolites and 25 proteins, which were then mapped to pathways using IMPaLA. Results showed that ketosis altered a wide range of metabolic pathways, such as metabolism, metabolism of proteins, gene expression and post-translational protein modification, vitamin metabolism, signaling, and disease related pathways. Findings presented here are relevant for identifying molecular targets for ketosis and biomarkers for ketosis detection during the transition period.
Collapse
Affiliation(s)
| | | | | | | | | | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Yang L, Bai J, Ju Z, Jiang Q, Wang J, Gao Y, Zhang Y, Wei X, Huang J. Effect of functional single nucleotide polymorphism g.-572 A > G of apolipoprotein A1 gene on resistance to ketosis in Chinese Holstein cows. Res Vet Sci 2020; 135:310-316. [PMID: 33127092 DOI: 10.1016/j.rvsc.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022]
Abstract
The ketosis has negative effects on the high-yielding dairy cows during early lactation. Apolipoprotein A1 (APOA1) is a component of high-density lipoprotein. However, the association of APOA1 gene with ketosis, and the molecular mechanisms of expression of APOA1 gene are not fully understood in dairy cows. In this study, expression of APOA1 in the liver and blood was investigated by RT-qPCR and immunohistochemistry, and genetic variation in the 5'-flanking region of the AOPA1 gene was also screened and identified. In addition, correlation of the single nucleotide polymorphisms (SNPs) of APOA1 gene with blood ketone characters, and activity of APOA1 promoter were analyzed in dairy cows. The results showed that ApoA1 protein was expressed in the liver, and the mRNA level of APOA1 was significantly higher in the cows with ketosis comparing to the healthy cows. In addition, a novel SNP (g.-572 A > G) in the core promoter of the APOA1 gene was identified between base g.-714 and g.-68 through transient transfection in both HepG2 cell and FFb cell, and luciferase report assay. Moreover, there was lower concentration of blood β-hydroxybutyrate in cows with genotype GG comparing to the cows with genotypes AA and AG. This study reported for the first time that the genetic variant g.-572 A > G in the core promoter region of APOA1 gene was associated with the ketosis in Chinese Holstein cows, and g.-572 A > G may be used as a genetic marker for ketosis prevention.
Collapse
Affiliation(s)
- Ling Yang
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jiachen Bai
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China.
| |
Collapse
|
23
|
Foroutan A, Fitzsimmons C, Mandal R, Piri-Moghadam H, Zheng J, Guo A, Li C, Guan LL, Wishart DS. The Bovine Metabolome. Metabolites 2020; 10:metabo10060233. [PMID: 32517015 PMCID: PMC7345087 DOI: 10.3390/metabo10060233] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023] Open
Abstract
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including serum, ruminal fluid, liver, Longissimus thoracis (LT) muscle, semimembranosus (SM) muscle, and testis tissues. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography–tandem mass spectrometry (LC–MS/MS), and inductively coupled plasma–mass spectrometry (ICP–MS), we were able to identify and quantify more than 145 metabolites in each of these biofluids/tissues. Combining these results with previous work done by our team on other bovine biofluids, as well as previously published literature values for other bovine tissues and biofluids, we were able to generate quantitative reference concentration data for 2100 unique metabolites across five different bovine biofluids and seven different tissues. These experimental data were combined with computer-aided, genome-scale metabolite inference techniques to add another 48,628 unique metabolites that are biochemically expected to be in bovine tissues or biofluids. Altogether, 51,801 unique metabolites were identified in this study. Detailed information on these 51,801 unique metabolites has been placed in a publicly available database called the Bovine Metabolome Database.
Collapse
Affiliation(s)
- Aidin Foroutan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2P5, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Hamed Piri-Moghadam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - AnChi Guo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Carin Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
- Correspondence:
| |
Collapse
|