1
|
Zhao Y, Zhang Z, Zheng Y, Bai H, Wu X, Yang Y, Zhang J, Yu C. LncRNA LINC01128 promotes prostate cancer cell proliferation, metastasis, and epithelial-mesenchymal transition by modulating miR-27b-3p. J Cancer Res Clin Oncol 2025; 151:98. [PMID: 40035871 PMCID: PMC11880183 DOI: 10.1007/s00432-025-06153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignancy within the male reproductive system that poses a significant threat to patients' lives. The function of long non-coding RNA LINC01128 in PCa progression remains to be elucidated. OBJECTIVE The objective was to evaluate the significance of LINC01128 in PCa and to elucidate the underlying mechanisms, thereby identifying a potential target for PCa treatment. METHODS The clinical significance of LINC01128 in PCa was investigated by bioinformatics methods and data analysis. The expression of LINC01128 was quantified using real-time quantitative PCR. The impact of LINC01128 on PCa cell viability and metastasis was evaluated through Cell Counting Kit-8 and Transwell assays. The expression of epithelial-mesenchymal transition markers was analyzed by Western blot analysis. Bioinformatics methods and dual-luciferase reporter assay were employed to explore the mechanisms underlying the role of LINC01128 in PCa progression. RESULTS LINC01128 demonstrated significant upregulation in PCa and exhibited a strong correlation with tumor-node-metastasis (TNM) stage, Gleason score, and lymph node metastasis. The upregulation of LINC01128 was found to be linked to a poorer prognosis for PCa. In PCa cells, silencing LINC01128 resulted in the suppression of cell proliferation, migration, and invasion. Furthermore, the knockdown of LINC01128 enhanced the expression of E-cadherin while concurrently repressing the expression of N-cadherin and Vimentin. Mechanistically, the negative regulation of miR-27b-3p by LINC01128 mediated the role of LINC01128 in PCa progression. CONCLUSIONS In PCa, high expression of LINC01128 may predict patients' unfavorable prognosis. LINC01128 promoted PCa cellular processes by negatively regulating miR-27b-3p.
Collapse
Affiliation(s)
- Yuhui Zhao
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Shanghai, 200032, China
| | - Zhihang Zhang
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Yi Zheng
- Department of Breast Surgery, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, 452400, China
| | - Huiming Bai
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Shanghai, 200032, China
| | - Xiaotong Wu
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Shanghai, 200032, China
| | - Yantao Yang
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Shanghai, 200032, China
| | - Junfeng Zhang
- Department of Emergency, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo, 454100, China
| | - Chao Yu
- Department of Urology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zuo X, Li H, Xie S, Shi M, Guan Y, Liu H, Yan R, Zheng A, Li X, Liu J, Gan Y, Shi H, Chen K, Jia S, Chen G, Liao M, Wang Z, Han Y, Liao B. A prognostic model of 8-T/B cell receptor-related signatures for hepatocellular carcinoma. Discov Oncol 2025; 16:105. [PMID: 39890709 PMCID: PMC11785873 DOI: 10.1007/s12672-025-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The T cell receptor (TCR) and B cell receptor (BCR) are the receptors on the surface of T or B cell, which are crucial for recognizing tumor antigens. It is profound to establish a practical TCR/BCR-related gene signature prognostic model for the further diagnosis and treatment among HCC patients. METHODS In this study, we categorized gene expression data of HCC patients from The Cancer Genome Altas and identified TCR related genes by the Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analysis. Both the CIBERSORT algorithm and the TB tools were used to analyze the features and heterogeneity of the tumor microenvironment. RESULTS Finally, an 8-gene prognostic model was successfully established and achieved the validation in both the International Cancer Genome Consortium and Nanfang Hospital cohorts. Patients were divided into high-risk and low-risk groups based on the median of the risk scores. We observed that tumor differentiation was worse while the fibrinogen concentration was higher in the high-risk group of patients. Both the number of unique TCR and BCR clonotypes and the expanded clones were higher in the low-risk group than in the high-risk group. CONCLUSIONS Together, our study screened a TCR/BCR-related signature prognostic model, which might turn into a beneficial and practical tool to solve the perplexities of the treatment, prognosis prediction and management for HCC patients.
Collapse
Affiliation(s)
- Xuan Zuo
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Li
- HRYZ Biotech Co., Shenzhen, China
| | - Shi Xie
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengfen Shi
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yujuan Guan
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Rong Yan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Anqi Zheng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiabang Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yifan Gan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Shi
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Keng Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shijie Jia
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Guanmei Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Min Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Zhanhui Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Baolin Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
3
|
Zhao C, Zhang Z, Wang Z, Liu X. Circular RNA circRANGAP1/miR-512-5p/SOD2 Axis Regulates Cell Proliferation and Migration in Non-small Cell Lung Cancer (NSCLC). Mol Biotechnol 2024; 66:3608-3617. [PMID: 38082189 PMCID: PMC11564362 DOI: 10.1007/s12033-023-00962-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent histology type of lung cancer worldwide, accounting for 18% of total cancer-related deaths estimated by GLOBOCAN in 2020. CircRNAs have emerged as potent regulators of NSCLC development. CircRANGAP1 (hsa_circ_0001235/hsa_circ_0063526) is a potential biomarker for NSCLC identified by microarray dataset analysis. Here, we investigated the biological functions of circRANGAP1 in NSCLC development and elucidated the associated competing endogenous RNA (ceRNA) mechanisms. We found that circRANGAP1 expression was upregulated in NSCLC tissues and cells, which was inversely correlated with carcinogenesis and poor clinical outcome of NSCLC patients. CircRANGAP1 knockdown inhibited NSCLC migration by regulating miR-512-5p/SOD2 axis. In conclusion, circRANGAP1 facilitated NSCLC tumorigenesis and development by sponging miR-512-5p to upregulate SOD2 expression. Suppression of circRANGAP1 expression by si-circRANGAP1 treatment could be a strategy to inhibit NSCLC development and metastasis.
Collapse
Affiliation(s)
- Chunhua Zhao
- Department of Internal Medicine Oncology, Traditional Chinese Medicine Hospital of Jiashan, 38 Gujiadai, Jiaxing, 314100, Zhengjiang, China
| | - Zhongqi Zhang
- Department of Internal Medicine Oncology, Traditional Chinese Medicine Hospital of Jiashan, 38 Gujiadai, Jiaxing, 314100, Zhengjiang, China
| | - Zhengzuo Wang
- Department of Proctology, Traditional Chinese Medicine Hospital of Jiashan, 38 Gujiadai, Jiaxing, 314100, Zhengjiang, China.
| | - XinLi Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
4
|
Chen W, Zhu T, Pu X, Zhao L, Zhou S, Zhong X, Wang S, Lin T. Machine Learning Diagnostic Model for Hepatocellular Carcinoma Based on Liquid-Liquid Phase Separation and Ferroptosis-Related Genes. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 36:89-99. [PMID: 39635757 PMCID: PMC11843271 DOI: 10.5152/tjg.2024.24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/17/2024] [Indexed: 12/07/2024]
Abstract
Background/Aims Hepatocellular carcinoma (HCC) represents a primary liver malignancy with a multifaceted molecular landscape. The interplay between liquid-liquid phase separation (LLPS) and ferroptosis-a regulated form of cell death-has garnered interest in tumorigenesis. However, the precise role of LLPS and ferroptosis-related genes in HCC progression and prognosis remains obscure. Unraveling this connection could pave the way for innovative diagnosis and therapeutic strategies. Materials and Methods The differentially expressed genes (DEGs) were identified based on 3 GEO datasets, followed by overlapping with LLPS-related and ferroptosis-related genes. Based on central hub genes, a diagnostic model was developed through LASSO regression and validated using KM survival analysis and real-time quantitative polymerase chain reaction (RT-qPCR). Then the effects of NRAS on the development of HCC and ferroptosis were also detected. Results We identified 24 DEGs overlapping among HCC-specific, LLPS, and ferroptosis-related genes. A diagnostic model, centered on 5 hub genes, was developed and validated. Lower expression of these genes corresponded with enhanced patient survival rates, and they were distinctly overexpressed in HCC cells. NRAS downregulation significantly inhibited HepG2 cell proliferation and migration (P < .01). Fe2+ content and ROS levels were both significantly increased in the si-NRAS group when compared to those in the si-NC group (P < .01), while opposite results were observed for the protein level of GPX4 and GSH content. Conclusion The diagnostic model with 5 hub genes (EZH2, HSPB1, NRAS, RPL8, and SUV39H1) emerges as a potential innovative tool for the diagnosis of HCC. NRAS promotes the carcinogenesis of HCC cells and inhibits ferroptosis.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Xiaofan Pu
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Linlin Zhao
- Department of Cardiology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Xin Zhong
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Suihan Wang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
5
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
7
|
Ni L, Gao Q, Zhao Q, Dai K, Jin M, Fu C, Xiao M, Zhu W, Bi Y. Circ-EIF3I Promotes Hepatocellular Carcinoma Progression Through Modulating miR-361-3p/DUSP2 Axis. DNA Cell Biol 2024; 43:258-266. [PMID: 38513057 DOI: 10.1089/dna.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers globally. Circular RNAs (circRNAs) have been implicated in the development of HCC. Previous studies have confirmed that circ-EIF3I plays an important role in the progress of lung cancer. Nevertheless, the biological functions of circ-EIF3I and the underlying mechanisms by which they regulate HCC progression remain unclear. In this study, the regulatory mechanism and targets were studied with bioinformatics analysis, luciferase reporting analysis, transwell migration, Cell Counting Kit-8, and 5-Ethynyl-2'-deoxyuridine analysis. In addition, in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circ-EIF3I in HCC. The result shows that the circ-EIF3I expression was increased in HCC cell line, which means that circ-EIF3I plays a role in the progression of HCC. Downregulation of circ-EIF3I suppressed HCC cells' proliferation and migration in both in vivo and in vitro experiments. Bioinformatics and luciferase report analysis confirmed that both miR-361-3p and Dual-specificity phosphatase 2 (DUSP2) were the downstream target of circ-EIF3I. The overexpression of DUSP2 or inhibition of miR-361-3p restored HCC cells' proliferation and migration ability after silence circ-EIF3I. Taken together, our study found that downregulation of circ-EIF3I suppressed the progression of HCC through miR-361-3p/DUSP2 Axis.
Collapse
Affiliation(s)
- Lingna Ni
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Qianqian Gao
- Department of Pathology, Changzhou Tumor Hospital, Changzhou, China
| | - Qiu Zhao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Kejun Dai
- Department of Radiotherapy, Changzhou Tumor Hospital, Changzhou, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cong Fu
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Min Xiao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yanzhi Bi
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, China
| |
Collapse
|
8
|
Wang H, Wei X, Liu L, Zhang J, Li H. Suppression of A-to-I RNA-editing enzyme ADAR1 sensitizes hepatocellular carcinoma cells to oxidative stress through regulating Keap1/Nrf2 pathway. Exp Hematol Oncol 2024; 13:30. [PMID: 38468359 DOI: 10.1186/s40164-024-00494-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND A-to-I RNA editing is an abundant post-transcriptional modification event in hepatocellular carcinoma (HCC). Evidence suggests that adenosine deaminases acting on RNA 1 (ADAR1) correlates to oxidative stress that is a crucial factor of HCC pathogenesis. The present study investigated the effect of ADAR1 on survival and oxidative stress of HCC, and underlying mechanisms. METHODS ADAR1 expression was measured in fifty HCC and normal tissues via real-time quantitative PCR, and immunohistochemistry. For stable knockdown or overexpression of ADAR1, adeno-associated virus vectors carrying sh-ADAR1 or ADAR1 overexpression were transfected into HepG2 and SMMC-7721 cells. Transfected cells were exposed to oxidative stress agonist tBHP or sorafenib Bay 43-9006. Cell proliferation, apoptosis, and oxidative stress were measured, and tumor xenograft experiment was implemented. RESULTS ADAR1 was up-regulated in HCC and correlated to unfavorable clinical outcomes. ADAR1 deficiency attenuated proliferation of HCC cells and tumor growth and enhanced apoptosis. Moreover, its loss facilitated intracellular ROS accumulation, and elevated Keap1 and lowered Nrf2 expression. Intracellular GSH content and SOD activity were decreased and MDA content was increased in the absence of ADAR1. The opposite results were observed when ADAR1 was overexpressed. The effects of tBHP and Bay 43-9006 on survival, apoptosis, intracellular ROS accumulation, and Keap1/Nrf2 pathway were further exacerbated by simultaneous inhibition of ADAR1. CONCLUSIONS The current study unveils that ADAR1 is required for survival and oxidative stress of HCC cells, and targeting ADAR1 may sensitize HCC cells to oxidative stress via modulating Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General Surgery, The First Hospital Affiliated to Fuyang Normal University, Fuyang, 236006, Anhui, China
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, Anhui, China
| | - Xiaoyu Wei
- Department of Infectious Diseases, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Lu Liu
- Department of Endocrinology, The Affiliated Nantong Hospital of Shanghai Jiao Tong University, Nantong, 226001, Jiangsu, China.
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, Sichuan, China.
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, 230031, Anhui, China.
| |
Collapse
|
9
|
Ding Y, Ning Y, Kang H, Yuan Y, Lin K, Wang C, Yi Y, He J, Li L, He X, Chang Y. ZMIZ2 facilitates hepatocellular carcinoma progression via LEF1 mediated activation of Wnt/β-catenin pathway. Exp Hematol Oncol 2024; 13:5. [PMID: 38254216 PMCID: PMC10802047 DOI: 10.1186/s40164-024-00475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies with a high lethality rate. ZMIZ2 is a transcriptional co-activator implicated in various human diseases. However, the role and molecular mechanism of ZMIZ2 in HCC remains to be elucidated. METHODS The expression and prognostic value of ZMIZ2 in HCC was excavated from public databases and explored by bioinformatic analysis. Then the expression of ZMIZ2 and related genes was further validated by quantitative RT-PCR, western blotting, and immunohistochemistry. Loss and gain-of-function experiments were performed in vitro and in vivo to investigate the function of ZMIZ2 in HCC. In addition, transcriptome sequencing and immunoprecipitation was conducted to explore the potential molecular mechanisms of ZMIZ2. RESULTS ZMIZ2 was highly expressed in HCC and associated with poor prognosis. Silencing ZMIZ2 significantly inhibited HCC cell proliferation, cell cycle process, migration, and invasion in vitro, and also inhibited the progression of HCC in vivo. Additionally, ZMIZ2 expression was correlated with immune cell infiltration in HCC samples. Somatic mutation analysis showed that ZMIZ2 and TP53 mutations jointly affected the progression of HCC. Mechanistically, ZMIZ2 interacted with LEF1 to regulate malignant progression of HCC by activating the Wnt/β-catenin pathway. CONCLUSION ZMIZ2 was overexpressed in HCC and associated with poor prognosis. The overexpression of ZMIZ2 was corelated with malignant phenotype, and it facilitated HCC progression via LEF1-mediated activation of the Wnt/β-catenin pathway. Furthermore, ZMIZ2 could be served as a prognostic biomarker and a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Yuan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianghua He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lurao Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|