1
|
Yuan X, Wang F, Zhao P, Yang B, Yang X, Tian T, Li B, Liu G, Wang S, Tang D, He Z, Li Y, Liu Y. Efficacy and safety of CD19 combined with CD22 or CD20 chimeric antigen receptor T-cell therapy for hematological malignancies. Front Immunol 2025; 16:1577360. [PMID: 40433368 PMCID: PMC12106392 DOI: 10.3389/fimmu.2025.1577360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
Background CD19 combined with CD22 or CD20 therapy is a promising immunotherapy approach for the treatment of hematological malignancies. Dual-targeted CD19/CD22 CAR T and CD19/CD22 CAR T-cell therapy are currently being evaluated in clinical trials, and the extent of improvement using CD19 in combination with dual-targeted therapy has not yet been determined. To compare the differences between the two in the treatment of hematological tumors, this study summarized the available evidence. To evaluate and compare the efficacy and safety of CD19-combined CD22 and CD19-combined CD20 CAR T-cell therapy. Methods Data from 13 clinical studies that included 628 patients with hematological malignancies were extracted and analyzed based on a set of inclusion and exclusion criteria. The primary efficacy outcomes were overall response rate (ORR), complete response (CR) rate, partial response (PR) rate, overall survival (OS) rate and minimal residual disease (MRD)-negative response rate. The safety outcomes were cytokine release syndrome (CRS) rate and immune effector cell-associated neurotoxicity syndrome (ICANS) rate. Results For CD19 combined with CD22 CAR T-cell therapy, the ORR was 83.7%; CR, 78.0%; PR, 20.7%, OS, 78.7%; MRD-negative response rate, 82.3%; incidence of CRS, 58.2%; ICANS, 7.7%. For CD19 combined with CD20 CAR T-cell therapy, the ORR was 80.3%; CR, 68.2%; PR, 10.9%; OS, 76.8%; incidence of CRS, 54.5%; ICANS, 21%. Subgroup analysis indicated that the PR of CD19 combined with CD22 was significantly greater than that of CD19 combined with CD20, and the incidence of ICANS was significantly lower with the CD19+CD22 CAR-T combination. Conclusion The data from this study suggest that CD19 combined with CD22 CAR T-cell therapy had a higher partial response rate in the treatment of hematologic malignancies and higher safety profile in the occurrence of ICANS than CD19 combined with CD20. These data provide an important clinical basis for the development of new therapeutic targets and the construction of therapeutic methods for the treatment of hematologic malignancies, and broaden our understanding of CD19 dual-targeted CAR T therapy.
Collapse
Affiliation(s)
- Xiaoshuang Yuan
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Feiqing Wang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Peng Zhao
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ting Tian
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bingbing Li
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guangyang Liu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Sanbin Wang
- Department of Hematology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Dongxin Tang
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhixu He
- Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanju Li
- Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Liu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Bogdanovic B, Hugonnet F, Montemagno C. Theranostics in Hematological Malignancies: Cutting-Edge Advances in Diagnosis and Targeted Therapy. Cancers (Basel) 2025; 17:1247. [PMID: 40227793 PMCID: PMC11987953 DOI: 10.3390/cancers17071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025] Open
Abstract
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, continue to challenge clinicians with complex treatment regimens that often involve significant side effects and limited success, especially in advanced stages. Recent advancements in nuclear medicine have introduced theranostic strategies that merge diagnostic imaging with targeted therapeutic approaches, offering the potential for more precise and personalized treatment. A key area of progress lies in the development of alpha-emitting radiopharmaceuticals, such as 225Ac, 211At, or 212Pb, which can deliver potent radiation directly to tumor cells, sparing healthy tissue and minimizing collateral damage. In parallel with these therapeutic advancements, molecular imaging using radiolabeled agents enables better disease monitoring, assessment of treatment efficacy, and personalized management of patients with hematologic malignancies. The integration of diagnostic imaging with radiotherapy allows for a more tailored approach, where treatment can be adjusted based on real-time information about tumor progression and response. This review examines the recent strides made in both the development of radiopharmaceuticals and their applications in molecular imaging, with a focus on the potential to improve precision, reduce toxicity, and optimize patient outcomes. The synergy between targeted therapy and molecular imaging represents a transformative shift in the management of hematologic malignancies. As these technologies evolve, they are poised to redefine treatment paradigms, offering new hope for patients and potentially improving survival rates with more effective and less toxic treatment options.
Collapse
Affiliation(s)
- Bojana Bogdanovic
- Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Florent Hugonnet
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France;
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
3
|
Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q, Wang X. Peripheral and central neuroimmune mechanisms in Alzheimer's disease pathogenesis. Mol Neurodegener 2025; 20:22. [PMID: 39985073 PMCID: PMC11846304 DOI: 10.1186/s13024-025-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Alzheimer's disease (AD) poses a growing global health challenge as populations age. Recent research highlights the crucial role of peripheral immunity in AD pathogenesis. This review explores how blood-brain barrier disruption allows peripheral immune cells to infiltrate the central nervous system (CNS), worsening neuroinflammation and disease progression. We examine recent findings on interactions between peripheral immune cells and CNS-resident microglia, forming a self-perpetuating inflammatory cycle leading to neuronal dysfunction. Moreover, this review emphasizes recent developments in the dysregulation of immune factors from both the periphery and CNS, and their impact on AD progression. With ongoing research and development of new therapeutic strategies, this review underscores the importance of modulating interactions between the peripheral immune system and CNS in AD therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
5
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Sui S, Zhong M, Zhong S, Peng X, Mao L, Chen C, Zeng C, Luo OJ, Li Y. BRD4 inhibitor reduces exhaustion and blocks terminal differentiation in CAR-T cells by modulating BATF and EGR1. Biomark Res 2024; 12:124. [PMID: 39407311 PMCID: PMC11476310 DOI: 10.1186/s40364-024-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Songnan Sui
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Zhang Q, Tian Y, Yang Y, Huang Q, Feng H, Zeng R, Li S. A bioinspired supramolecular nanoprodrug for precision therapy of B-cell non-Hodgkin's lymphoma. J Nanobiotechnology 2024; 22:475. [PMID: 39127737 DOI: 10.1186/s12951-024-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Fludarabine (FA) is still considered as a first-line chemotherapy drug for hematological tumors related to B lymphocytes. However, it is worth noting that the non-specific distribution and non-different cytotoxicity of FA may lead to irreversible consequences such as central nervous system damage such as blindness, coma, and even death. Therefore, it is very important to develop a system to targeting delivery FA. In preliminary studies, it was found that B lymphoma cells would specific highly expressing the sialic acid-binding immunoglobulin-like lectin 2 (known as CD22). Inspired by the specific recognition of sialic acid residues and CD22, we have developed a supramolecular prodrug based on polysialic acid, an endogenous biomacromolecule, achieving targeted-therapy of B-cell non-Hodgkin's lymphoma (B-NHL). Specifically, the prepared hydrophobic reactive oxygen species-responsive FA dimeric prodrug (F2A) interacts with the TPSA, which polysialic acid were modified by the thymidine derivatives, through non-covalent intermolecular interactions similar to "Watson-Crick" base pairing, resulting in the formation of nanoscale supramolecular prodrug (F@TPSA). Cell experiments have confirmed that F@TPSA can be endocytosed by CD22+ B lymphoma cells including Raji and Ramos cells, and there is a significant difference of endocytosis in other leukocytes. Furthermore, in B-NHL mouse model, compared with FA, F@TPSA is determined to have a stronger tumor targeting and inhibitory effect. More importantly, the distribution of F@TPSA in vivo tends to be enriched in lymphoma tissue rather than nonspecific, thus reducing the leukopenia of FA. The targeted delivery system based on PSA provides a new prodrug modification strategy for targeted treatment of B-NHL.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Qiuying Huang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Dhillon S. Inotuzumab Ozogamicin: First Pediatric Approval. Paediatr Drugs 2024; 26:459-467. [PMID: 38780741 DOI: 10.1007/s40272-024-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Inotuzumab ozogamicin (BESPONSA™) is a CD22-targeted monoclonal antibody drug conjugate (ADC) developed by Pfizer for the treatment of CD22-postive B-cell precursor acute lymphoblastic leukaemia (ALL). Inotuzumab ozogamicin comprises a humanized IgG4 anti-CD22 monoclonal antibody covalently linked to the potent DNA-binding cytotoxic agent N-acetyl-gamma-calicheamicin dimethylhydrazide (CalichDMH) via a linker. Inotuzumab ozogamicin binds to CD22-expressing tumour cells, facilitating the delivery of conjugated CalichDMH, which after intracellular activation induces double strand DNA breaks, ultimately leading to cell cycle arrest and apoptotic cell death. Inotuzumab ozogamicin is approved in the USA, Europe and several countries worldwide for the treatment of relapsed or refractory CD22-positive B-cell precursor ALL in adults. On 6 March 2024, inotuzumab ozogamicin received its first pediatric approval in the USA for this indication in patients aged ≥ 1 years. Inotuzumab ozogamicin has since been approved in Japan in March 2024 for the same indication in pediatric patients. This article summarizes the milestones in the development of inotuzumab ozogamicin leading to this first approval for the treatment of relapsed or refractory CD22-positive B-cell precursor ALL in pediatric patients.
Collapse
MESH Headings
- Humans
- Inotuzumab Ozogamicin
- Child
- Drug Approval
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/administration & dosage
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
9
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
11
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|