1
|
Velsko IM, Warinner C. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. NPJ Biofilms Microbiomes 2025; 11:19. [PMID: 39824852 PMCID: PMC11748738 DOI: 10.1038/s41522-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
The genus Streptococcus is highly diverse and a core member of the primate oral microbiome. Streptococcus species are grouped into at least eight phylogenetically-supported clades, five of which are found almost exclusively in the oral cavity. We explored the dominant Streptococcus phylogenetic clades in samples from multiple oral sites and from ancient and modern-day humans and non-human primates and found that clade dominance is conserved across human oral sites, with most Streptococcus reads assigned to species falling in the Sanguinis or Mitis clades. However, minor differences in the presence and abundance of individual species within each clade differentiated human lifestyles, with loss of S. sinensis appearing to correlate with toothbrushing. Of the non-human primates, only baboons show clade abundance patterns similar to humans, suggesting that a habitat and diet similar to that of early humans may favor the growth of Sanguinis and Mitis clade species.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Radcliffe Institute for Advanced Study, Cambridge, MA, USA.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Pilliol V, Mahmoud Abdelwadoud B, Aïcha H, Lucille T, Gérard A, Hervé T, Michel D, Ghiles G, Elodie T. Methanobrevibacter oralis: a comprehensive review. J Oral Microbiol 2024; 16:2415734. [PMID: 39502191 PMCID: PMC11536694 DOI: 10.1080/20002297.2024.2415734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Methanobrevibacter oralis (M. oralis) has predominated human oral microbiota methanogenic archaea as far back as the Palaeolithic era in Neanderthal populations and gained dominance from the 18th century onwards. M. oralis was initially isolated from dental plaque samples collected from two apparently healthy individuals allowing its first characterization. The culture of M. oralis is fastidious and has been the subject of several studies to improve its laboratory growth. Various PCR methods are used to identify M. oralis, targeting either the 16S rRNA gene or the mcrA gene. However, only one RTQ-PCR system, based on a chaperonin gene, offers specificity, and allows for microbial load quantification. Next-generation sequencing contributed five draft genomes, each approximately 2.08 Mb (±0.052 Mb) with a 27.82 (±0.104) average GC%, and two ancient metagenomic assembled genomes. M. oralis was then detected in various oral cavity sites in healthy individuals and those diagnosed with oral pathologies, notably periodontal diseases, and endodontic infections. Transmission pathways, possibly involving maternal milk and breastfeeding, remain to be clarified. M. oralis was further detected in brain abscesses and respiratory tract samples, bringing its clinical significance into question. This review summarizes the current knowledge about M. oralis, emphasizing its prevalence, associations with dysbiosis and pathologies in oral and extra-oral situations, and symbiotic relationships, with the aim of paving the way for further investigations.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Boualam Mahmoud Abdelwadoud
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hamiech Aïcha
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Tellissi Lucille
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Aboudharam Gérard
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Tassery Hervé
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Drancourt Michel
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Grine Ghiles
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Terrer Elodie
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| |
Collapse
|
3
|
Fleskes RE, Johnson SJ, Honap TP, Abin CA, Gilmore JK, Oubré L, Bueschgen WD, Abel SM, Ofunniyin AA, Lewis CM, Schurr TG. Oral microbial diversity in 18th century African individuals from South Carolina. Commun Biol 2024; 7:1213. [PMID: 39342044 PMCID: PMC11439080 DOI: 10.1038/s42003-024-06893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, Dartmouth College, Hanover, NH, USA.
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Joanna K Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - La'Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
| | | | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, SC, USA
| | - Ade A Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
| | - Theodore G Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
5
|
Huang KD, Amend L, Gálvez EJC, Lesker TR, de Oliveira R, Bielecka A, Blanco-Míguez A, Valles-Colomer M, Ruf I, Pasolli E, Buer J, Segata N, Esser S, Strowig T, Kehrmann J. Establishment of a non-Westernized gut microbiota in men who have sex with men is associated with sexual practices. Cell Rep Med 2024; 5:101426. [PMID: 38366600 PMCID: PMC10982974 DOI: 10.1016/j.xcrm.2024.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Romulo de Oliveira
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Isabel Ruf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Stefan Esser
- Department of Dermatology and Venerology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Forshaw R. Windows into the past: recent scientific techniques in dental analysis. Br Dent J 2024; 236:205-211. [PMID: 38332093 PMCID: PMC10853062 DOI: 10.1038/s41415-024-7053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 02/10/2024]
Abstract
Teeth are the hardest and most chemically stable tissues in the body, are well-preserved in archaeological remains and, being resistant to decomposition in the soil, survive long after their supporting structures have deteriorated. It has long been recognised that visual and radiographic examination of teeth can provide considerable information relating to the lifestyle of an individual. This paper examines the latest scientific approaches that have become available to investigate recent and ancient teeth. These techniques include DNA analysis, which can be used to determine the sex of an individual, indicate familial relationships, study population movements, provide phylogenetic information and identify the presence of disease pathogens. A stable isotopic approach can shed light on aspects of diet and mobility and even research climate change. Proteomic analysis of ancient dental calculus can reveal specific information about individual diets. Synchrotron microcomputed tomography is a non-invasive technique which can be used to visualise physiological impactful events, such as parturition, menopause and diseases in cementum microstructure - these being displayed as aberrant growth lines.
Collapse
Affiliation(s)
- Roger Forshaw
- KNH Centre for Biomedical Egyptology, Faculty of Biology, Medicine and Health, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
7
|
Pilliol V, Beye M, Terlier L, Balmelle J, Kacel I, Lan R, Aboudharam G, Grine G, Terrer E. Methanobrevibacter massiliense and Pyramidobacter piscolens Co-Culture Illustrates Transkingdom Symbiosis. Microorganisms 2024; 12:215. [PMID: 38276200 PMCID: PMC10819710 DOI: 10.3390/microorganisms12010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Among oral microbiota methanogens, Methanobrevibacter massiliense (M. massiliense) has remained less studied than the well-characterised and cultivated methanogens Methanobrevibacter oralis and Methanobrevibacter smithii. M. massiliense has been associated with different oral pathologies and was co-isolated with the Synergistetes bacterium Pyramidobacter piscolens (P. piscolens) in one case of severe periodontitis. Here, reporting on two additional necrotic pulp cases yielded the opportunity to characterise two co-cultivated M. massiliense isolates, both with P. piscolens, as non-motile, 1-2-µm-long and 0.6-0.8-µm-wide Gram-positive coccobacilli which were autofluorescent at 420 nm. The two whole genome sequences featured a 31.3% GC content, gapless 1,834,388-base-pair chromosome exhibiting an 85.9% coding ratio, encoding a formate dehydrogenase promoting M. massiliense growth without hydrogen in GG medium. These data pave the way to understanding a symbiotic, transkingdom association with P. piscolens and its role in oral pathologies.
Collapse
Affiliation(s)
- Virginie Pilliol
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Mamadou Beye
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Laureline Terlier
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Julien Balmelle
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Idir Kacel
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Romain Lan
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
- CNRS, EFS, ADES, Aix-Marseille University, 13385 Marseille, France
| | - Gérard Aboudharam
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Ghiles Grine
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Elodie Terrer
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
8
|
Kırdök E, Kashuba N, Damlien H, Manninen MA, Nordqvist B, Kjellström A, Jakobsson M, Lindberg AM, Storå J, Persson P, Andersson B, Aravena A, Götherström A. Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals. Sci Rep 2024; 13:22125. [PMID: 38238372 PMCID: PMC10796427 DOI: 10.1038/s41598-023-48762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Prehistoric chewed pitch has proven to be a useful source of ancient DNA, both from humans and their microbiomes. Here we present the metagenomic analysis of three pieces of chewed pitch from Huseby Klev, Sweden, that were dated to 9,890-9,540 before present. The metagenomic profile exposes a Mesolithic oral microbiome that includes opportunistic oral pathogens. We compared the data with healthy and dysbiotic microbiome datasets and we identified increased abundance of periodontitis-associated microbes. In addition, trained machine learning models predicted dysbiosis with 70-80% probability. Moreover, we identified DNA sequences from eukaryotic species such as red fox, hazelnut, red deer and apple. Our results indicate a case of poor oral health during the Scandinavian Mesolithic, and show that pitch pieces have the potential to provide information on material use, diet and oral health.
Collapse
Affiliation(s)
- Emrah Kırdök
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin, Turkey.
| | - Natalija Kashuba
- Department of Archaeology and Ancient History, Uppsala University, Engelska Parken, Thunbergsvägen 3H Box 626, 751 26, Uppsala, Sweden
| | - Hege Damlien
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Mikael A Manninen
- PAES, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| | - Bengt Nordqvist
- Foundation War-Booty Site Finnestorp, Klarinettvägen 75, 434 75, Kungsbacka, Sweden
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Evolutionsbiologiskt Centrum EBC Norbyvägen 18 A, Uppsala, Sweden
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, 44018, Kalmar, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Per Persson
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Insitutet, P.O. Box 285, 171 77, Stockholm, Sweden
| | - Andrés Aravena
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Archaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Gancz AS, Farrer AG, Nixon MP, Wright S, Arriola L, Adler C, Davenport ER, Gully N, Cooper A, Britton K, Dobney K, Silverman JD, Weyrich LS. Ancient dental calculus reveals oral microbiome shifts associated with lifestyle and disease in Great Britain. Nat Microbiol 2023; 8:2315-2325. [PMID: 38030898 PMCID: PMC11323141 DOI: 10.1038/s41564-023-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of chronic, non-communicable diseases has risen sharply in recent decades, especially in industrialized countries. While several studies implicate the microbiome in this trend, few have examined the evolutionary history of industrialized microbiomes. Here we sampled 235 ancient dental calculus samples from individuals living in Great Britain (∼2200 BCE to 1853 CE), including 127 well-contextualized London adults. We reconstructed their microbial history spanning the transition to industrialization. After controlling for oral geography and technical biases, we identified multiple oral microbial communities that coexisted in Britain for millennia, including a community associated with Methanobrevibacter, an anaerobic Archaea not commonly prevalent in the oral microbiome of modern industrialized societies. Calculus analysis suggests that oral hygiene contributed to oral microbiome composition, while microbial functions reflected past differences in diet, specifically in dairy and carbohydrate consumption. In London samples, Methanobrevibacter-associated microbial communities are linked with skeletal markers of systemic diseases (for example, periostitis and joint pathologies), and their disappearance is consistent with temporal shifts, including the arrival of the Second Plague Pandemic. This suggests pre-industrialized microbiomes were more diverse than previously recognized, enhancing our understanding of chronic, non-communicable disease origins in industrialized populations.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - Andrew G Farrer
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle P Nixon
- College of Information Sciences and Technology, The Pennsylvania State University, State College, PA, USA
| | - Sterling Wright
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - Luis Arriola
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina Adler
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Emily R Davenport
- Department of Biology, The Pennsylvania State University, State College, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA
| | - Neville Gully
- School of Dentistry, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Alan Cooper
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Gulbali Institute, Charles Sturt University, Albury, New South Wales, Australia
| | - Kate Britton
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK
| | - Keith Dobney
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK
- Department of Archaeology, Faculty of Arts and Social Sciences, University of Sydney, Sydney, New South Wales, Australia
- Department of Archaeology, Classics and Egyptology, School of Histories, Languages and Cultures, University of Liverpool, Liverpool, UK
- Department of Archaeology, Faculty of Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin D Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, State College, PA, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, State College, PA, USA
- Department of Statistics, The Pennsylvania State University, State College, PA, USA
- Department of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Laura S Weyrich
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA.
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
10
|
Liu Z, Mu C, Zhu W. Metagenomics-based inference of microbial metabolism towards neuroactive amino acids and the response to antibiotics in piglet colon. Amino Acids 2023; 55:1333-1347. [PMID: 37581868 DOI: 10.1007/s00726-023-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
Gut-derived neuroactive metabolites from amino acids perform a broad range of physiological roles in the body. However, the interaction between microbiota and epithelium in the metabolism of amino acids with neuroactive properties remains unclear in the colon of piglets. To investigate the microbial and epithelial metabolism, metagenomics and mucosal metabolomics were performed using colonic samples from 12 ileum-canulated piglets subjected to a 25-day infusion with saline or antibiotics. We categorized 23 metabolites derived from the metabolism of tryptophan, glutamate, and tyrosine, known as precursors of neuroactive metabolites. Microbial enzymes involved in the kynurenine synthesis via arylformamidase, 4-aminobutyric acid (GABA) synthesis via putrescine aminotransferase, and tyramine synthesis via tyrosine decarboxylase were identified in Clostridiales bacterium, uncultured Blautia sp., and Methanobrevibacter wolinii, respectively. Antibiotics significantly affected the microbiota involved in tryptophan-kynurenine and glutamate-GABA metabolism. An increase in the relative abundance of putrescine aminotransferase and Blautia sp. correlated positively with an increase in luminal GABA concentration. Overall, our findings provide new insights into the microbial ability to metabolize key amino acids that are precursors of neuroactive metabolites.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Klapper M, Hübner A, Ibrahim A, Wasmuth I, Borry M, Haensch VG, Zhang S, Al-Jammal WK, Suma H, Fellows Yates JA, Frangenberg J, Velsko IM, Chowdhury S, Herbst R, Bratovanov EV, Dahse HM, Horch T, Hertweck C, González Morales MR, Straus LG, Vilotijevic I, Warinner C, Stallforth P. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 2023; 380:619-624. [PMID: 37141315 DOI: 10.1126/science.adf5300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. Here, we investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans spanning 100 kya to the present and reconstructed 459 bacterial metagenome-assembled genomes (MAGs). We identified a biosynthetic gene cluster (BGC) shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites we name paleofurans. This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.
Collapse
Affiliation(s)
- Martin Klapper
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Alexander Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Anan Ibrahim
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Ina Wasmuth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Maxime Borry
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Veit G Haensch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Shuaibing Zhang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Walid K Al-Jammal
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Harikumar Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - James A Fellows Yates
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jasmin Frangenberg
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Rosa Herbst
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Evgeni V Bratovanov
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Therese Horch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manuel Ramon González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, 39071 Santander, Spain
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Grupo I+D+i EvoAdapta, Departmento de Ciencias Históricas, Universidad de Cantabria, 39005 Santander, Spain
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Associated Research Group of Archaeogenetics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
12
|
Ferrando-Bernal M. Ancient DNA suggests anaemia and low bone mineral density as the cause for porotic hyperostosis in ancient individuals. Sci Rep 2023; 13:6968. [PMID: 37117261 PMCID: PMC10147686 DOI: 10.1038/s41598-023-33405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Porotic hyperostosis (PH) is a disease that had high prevalence during the Neolithic. Several hypotheses have been suggested to explain the origin of the disease, such as an iron deficiency diet, low B12 intake, malaria caused by Plasmodium spp., low haemoglobin levels or low vitamin D levels. None of these hypotheses have been tested genetically. Here, I calculated different genetic scores to test each hypothesis. Additionally, I calculated a genetic score of bone mineral density as it is a phenotype that seems to be selected in ancient Europeans. I apply these genetic scores on 80 ancient samples, 33 with diagnosed PH. The results seem to suggest anaemia and low bone mineral density as the main cause for this disease. Additionally, Neolithic individuals show the lowest genetic risk score for bone mineral density of all other periods tested here, which may explain the highest prevalence of the porotic hyperostosis during this age.
Collapse
|
13
|
Tang L, Wilkin S, Richter KK, Bleasdale M, Fernandes R, He Y, Li S, Petraglia M, Scott A, Teoh FK, Tong Y, Tsering T, Tsho Y, Xi L, Yang F, Yuan H, Chen Z, Roberts P, He W, Spengler R, Lu H, Wangdue S, Boivin N. Paleoproteomic evidence reveals dairying supported prehistoric occupation of the highland Tibetan Plateau. SCIENCE ADVANCES 2023; 9:eadf0345. [PMID: 37043579 PMCID: PMC10096579 DOI: 10.1126/sciadv.adf0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The extreme environments of the Tibetan Plateau offer considerable challenges to human survival, demanding novel adaptations. While the role of biological and agricultural adaptations in enabling early human colonization of the plateau has been widely discussed, the contribution of pastoralism is less well understood, especially the dairy pastoralism that has historically been central to Tibetan diets. Here, we analyze ancient proteins from the dental calculus (n = 40) of all human individuals with sufficient calculus preservation from the interior plateau. Our paleoproteomic results demonstrate that dairy pastoralism began on the highland plateau by ~3500 years ago. Patterns of milk protein recovery point to the importance of dairy for individuals who lived in agriculturally poor regions above 3700 m above sea level. Our study suggests that dairy was a critical cultural adaptation that supported expansion of early pastoralists into the region's vast, non-arable highlands, opening the Tibetan Plateau up to widespread, permanent human occupation.
Collapse
Affiliation(s)
- Li Tang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Center for Archaeological Science, Sichuan University, Chengdu, China
- Institute for Prehistoric and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Shevan Wilkin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
- Institute for Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Kristine Korzow Richter
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, USA
| | - Madeleine Bleasdale
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Archaeology, University of York, York, UK
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Faculty of Arts, Masaryk University, Brno, Czech Republic
- Climate Change and History Research Initiative, Princeton University, Princeton, NJ, USA
| | - Yuanhong He
- Center for Archaeological Science, Sichuan University, Chengdu, China
- School of Archaeology and Museology, Sichuan University, Chengdu, China
| | - Shuai Li
- Center for Archaeological Science, Sichuan University, Chengdu, China
- School of Archaeology and Museology, Sichuan University, Chengdu, China
- Center for Tibetan Studies, Sichuan University, Chengdu, China
| | - Michael Petraglia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
- School of Social Science, University of Queensland, Brisbane, Australia
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Ashley Scott
- Department of Anthropology, Harvard University, Cambridge, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fallen K.Y. Teoh
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Yan Tong
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Tinlei Tsering
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Yang Tsho
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xian, China
| | - Feng Yang
- Center for Archaeological Science, Sichuan University, Chengdu, China
- School of Archaeology and Museology, Sichuan University, Chengdu, China
- Center for Tibetan Studies, Sichuan University, Chengdu, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, China
- School of Archaeology and Museology, Sichuan University, Chengdu, China
| | - Zujun Chen
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- School of Social Science, University of Queensland, Brisbane, Australia
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Wei He
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Robert Spengler
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Hongliang Lu
- Center for Archaeological Science, Sichuan University, Chengdu, China
- School of Archaeology and Museology, Sichuan University, Chengdu, China
- Center for Tibetan Studies, Sichuan University, Chengdu, China
| | - Shargan Wangdue
- Tibetan Cultural Relics Conservation Institute, Lhasa, China
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- School of Social Science, University of Queensland, Brisbane, Australia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Griffith Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
14
|
Warinner C. An Archaeology of Microbes. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2022. [DOI: 10.1086/721976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Warinner
- Department of Anthropology, Harvard University, Cambridge MA, USA 02138, and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 04103
| |
Collapse
|
15
|
Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells 2022; 11:cells11193091. [PMID: 36231053 PMCID: PMC9563262 DOI: 10.3390/cells11193091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Health is influenced by how the gut microbiome develops as a result of external and internal factors, such as nutrition, the environment, medication use, age, sex, and genetics. Alpha and beta diversity metrics and (enterotype) clustering methods are commonly employed to perform population studies and to analyse the effects of various treatments, yet, with the continuous development of (new) sequencing technologies, and as various omics fields as a result become more accessible for investigation, increasingly sophisticated methodologies are needed and indeed being developed in order to disentangle the complex ways in which the gut microbiome and health are intertwined. Diseases of affluence, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD), are commonly linked to species associated with the Bacteroides enterotype(s) and a decline of various (beneficial) complex microbial trophic networks, which are in turn linked to the aforementioned factors. In this review, we (1) explore the effects that some of the most common internal and external factors have on the gut microbiome composition and how these in turn relate to T2D and CVD, and (2) discuss research opportunities enabled by and the limitations of some of the latest technical developments in the microbiome sector, including the use of artificial intelligence (AI), strain tracking, and peak to trough ratios.
Collapse
|
16
|
Velsko IM, Semerau L, Inskip SA, García-Collado MI, Ziesemer K, Ruber MS, Benítez de Lugo Enrich L, Molero García JM, Valle DG, Peña Ruiz AC, Salazar-García DC, Hoogland MLP, Warinner C. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS NEXUS 2022; 1:pgac148. [PMID: 36714834 PMCID: PMC9802386 DOI: 10.1093/pnasnexus/pgac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Dental calculus preserves oral microbes, enabling comparative studies of the oral microbiome and health through time. However, small sample sizes and limited dental health metadata have hindered health-focused investigations to date. Here, we investigate the relationship between tobacco pipe smoking and dental calculus microbiomes. Dental calculus from 75 individuals from the 19th century Middenbeemster skeletal collection (Netherlands) were analyzed by metagenomics. Demographic and dental health parameters were systematically recorded, including the presence/number of pipe notches. Comparative data sets from European populations before and after the introduction of tobacco were also analyzed. Calculus species profiles were compared with oral pathology to examine associations between microbiome community, smoking behavior, and oral health status. The Middenbeemster individuals exhibited relatively poor oral health, with a high prevalence of periodontal disease, caries, heavy calculus deposits, and antemortem tooth loss. No associations between pipe notches and dental pathologies, or microbial species composition, were found. Calculus samples before and after the introduction of tobacco showed highly similar species profiles. Observed interindividual microbiome differences were consistent with previously described variation in human populations from the Upper Paleolithic to the present. Dental calculus may not preserve microbial indicators of health and disease status as distinctly as dental plaque.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maite I García-Collado
- GIPYPAC, Department of Geography, Prehistory and Archaeology, University of the Basque Country, Leioa 48940, Spain
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Kirsten Ziesemer
- University Library, Vrije Universiteit, Einsteinweg 2, Amsterdam 1081 HV, The Netherlands
| | - Maria Serrano Ruber
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Luis Benítez de Lugo Enrich
- Departmento de Prehistoria, Historia Antigua y Arqueología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | - David Gallego Valle
- Facultad de Letras, Universidad de Castilla-La Mancha, Ciudad Real 13004, Spain
| | | | - Domingo C Salazar-García
- Departament de Prehistòria, Historia i Arqueología, Universitat de València, València 46010, Spain
- Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Menno L P Hoogland
- Faculty of Archaeology, Leiden University, Einsteinweg, Leiden 2333 CC, The Netherlands
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|