1
|
Zhu Y, Zhang X, Tao W, Yang S, Qi H, Zhou Q, Su W, Zhang Y, Dong Y, Gan Y, Lei C, Zhang A. Mitigating the risk of antibiotic resistance and pathogenic bacteria in swine waste: The role of ectopic fermentation beds. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138221. [PMID: 40220395 DOI: 10.1016/j.jhazmat.2025.138221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The ectopic fermentation bed (EFB) is used to recycle animal waste, but the fate and dynamic change of antibiotic resistance genes (ARGs) with biocide or heavy metal resistance genes (B/MRGs) and pathogens remain unclear. We performed metagenomic sequencing on 129 samples to study the resistome and bacteriome in pig feces from 24 farms, comparing these profiles with EFBs from five farms, and one farm's EFB was monitored for 154 days. Results showed pig feces from different cities (Chengdu, Meishan, and Chongqing) shared 284 of 311 ARG subtypes, with over 70 % being high-risk ARGs, and 106 of 114 pathogenic bacteria. Swine farms were heavily contaminated with co-occurrences of risky ARGs, B/MRGs, and pathogenic hosts, particularly Escherichia coli and Streptococcus suis being hosts of multidrug ARGs. The application of EFBs markedly mitigated these risks in feces, showing a 3.09-fold decrease in high-risk ARGs, a 72.22 % reduction in B/MRGs, a 3.95-fold drop in prioritized pathogens, an 89.09 % decline in the relative abundance of pig pathogens, and a simplification of their correlation networks and co-occurrence patterns. A mantel analysis revealed that metal contents (Fe, Mn, and Cu) and time influenced pathogen and ARG profiles. Pathogens, ARGs, and risk ARGs exhibited periodic variations, peaking at days 14, 84, and 154, with 70-day intervals. This study provides a comprehensive assessment of the risks associated with pig feces and EFBs and demonstrates that EFBs reduce ARG risks by inhibiting their associations with B/MRGs and pathogens. These findings can help guide and improve the management of antimicrobial resistance and pathogenic contaminants in EFB applications to reduce environmental pollution.
Collapse
Affiliation(s)
- Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xialan Zhang
- Central Agricultural Broadcasting and Television School (Banan, Chongqing), Chongqing 401320, China
| | - Weilai Tao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shujian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoxuan Qi
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanhang Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yongyi Dong
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Gan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Fang C, Zhu J, Xu H, Qian M, Jin Y. Polystyrene microplastics and cypermethrin exposure interfered the complexity of antibiotic resistance genes and induced metabolic dysfunction in the gut of adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126288. [PMID: 40258509 DOI: 10.1016/j.envpol.2025.126288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Environmental pollutants such as microplastics (MPs) and pesticides are becoming prevalent in aquatic ecosystems, posing risks to wildlife and human health. This study investigated the toxicological effects of polystyrene microplastics (PS-MPs) and cypermethrin (CYP) on adult female zebrafish (Danio rerio), focusing on intestinal microenvironment. Adsorption kinetics experimental results showed that PS-MPs can adsorb a certain amount of CYP on its surface, thereby forming a new type of composite pollutant. After exposure to red fluorescent PS-MPs for 4 days, it was found that the PS-MPs could enter the zebrafish and accumulate in the intestines. Five-month-old female zebrafish were exposed to PS-MPs, CYP, and a mixture of both for 21 days. After exposure, feces were collected and analyzed using metagenomic sequencing to determine microbial composition and functional changes. Metagenomic sequencing of naturally excreted feces showed that co-exposure synergistically reduced α-diversity and shifted community structure, with marked losses of beneficial Fusobacteriota, Firmicutes and Cetobacterium somerae and enrichment of pathogenic Preplasmiviricota. Functional annotation indicated that PS-MPs alone up-regulated glycoside hydrolases and glycosyl-transferases, whereas CYP and the co-exposure group suppressed a great number of the top 50 carbohydrate-active enzymes and decreased secondary metabolic pathways linked to amino-acid, lipid and carbohydrate metabolism pathways. Antibiotic-resistance gene (ARGs) profiling identified 57 ARG types (such as sul1, adeF, lnuC and mphA) after co-exposure. Finally, key genes related to amino acid metabolism, carbohydrate metabolism, and lipid metabolism in intestinal tissue were significantly altered. Collectively, our data demonstrated that PS-MPs and CYP exposure amplified gut dysbiosis, metabolic dysfunction and ARG complexity in zebrafish. Overall, the study highlighted the potential risks of combined environmental pollutants on intestinal microbiota, with implications for ecosystem health.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jinhui Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haigui Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Minrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
3
|
Foysal MJ, Neilan BA, Timms V. The impact of anthropogenic activities on antimicrobial and heavy metal resistance in aquatic environments. Appl Environ Microbiol 2025; 91:e0231724. [PMID: 40071918 PMCID: PMC12016542 DOI: 10.1128/aem.02317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025] Open
Abstract
This study investigated the prevalence and co-occurrence of antimicrobial (AMR) and metal resistance (MR) in aquatic environments with different human impacts. Metagenomes from pristine, rural and urban sites in Australia were analyzed with AMR ++ and customized binning pipelines. AMR was present in all environments, while MR was mainly in rural and urban samples. AMR gene diversity was higher in rural and urban sites, exhibiting resistance to more antibiotic classes (n = 10) than the pristine site (n = 4). Metal and multicompound resistance was more frequent in rural (14%) compared to urban samples (5%). Pristine samples lacked multidrug and multicompound resistance and had lower resistance to aminoglycosides and the MLS group. Multiresistance was evidenced by copper and aminocoumarin resistance in rural samples and aminoglycoside and mercury resistance in Pseudomonas in all environments. These findings highlight the impact of human activities on AMR and MR spread, emphasizing the need for environmental monitoring and management. IMPORTANCE Antimicrobial resistance (AMR) and metal resistance (MR) are critical global health concerns exacerbated by anthropogenic activities. The intricate mechanism underlying the interaction among anthropogenic activities, microbial communities, and resistance remains enigmatic. We developed novel bioinformatic pipelines to unveil this interaction in three aquatic environments. Our findings demonstrate the presence of specific bacterial communities that drive AMR and MR in rural and urban environments. This study underscores the significance of proper agricultural practices, comprehensive monitoring, and management strategies to reduce anthropogenic impacts on environmental resistance.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Verlaine Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Zeng H, Yang H, Fu Z, Ma L, Lu L, Zeng T, Xiao Y, Lyu W. Integrated 16S rRNA and metagenomic sequencing reveals the distribution of key antibiotic resistance genes in duck gut microbiota. Poult Sci 2025; 104:105206. [PMID: 40294554 PMCID: PMC12056789 DOI: 10.1016/j.psj.2025.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
The duck gut microbiota is essential for host health and is considered a potential reservoir for antibiotic resistance genes (ARGs). However, research on ARGs in the duck gut microbiota is limited. This study collected 120 intestinal content samples from five segments (duodenum, jejunum, ileum, cecum, and colorectum) of ducks raised under two rearing conditions (with or without an open-air swimming pool). We compiled a comprehensive inventory of microbial genes in the duck gut and conducted an analysis of microbial composition and function across all intestinal segments using 16S rRNA gene sequencing combined with metagenomics. The findings revealed that Firmicutes were the most prevalent microbes in all intestinal segments. In the foregut (duodenum, jejunum, and ileum), microbial functions were mainly related to genetic information processing such as transcription, translation, replication, and glycosynthesis/gluconeogenesis. Conversely, in the hindgut (cecum and colorectum), microbial functions were primarily associated with the biosynthesis of secondary metabolites and various metabolic pathways. The analysis of ARGs indicated a higher relative abundance of ARGs in the cecum and colorectum (P < 0.05) of ducks in the presence of an open-air swimming pool compared to the absence of one. Furthermore, through co-occurrence network analysis, we identified Bacteroides, Roseburia, Ruminococcus, and Blautia as potential hosts of ARGs such as tetQ, tet32, tet37, vanR, vanG, and acrB in the hindgut. This study provides new insights into the complex relationship between ARGs and the microbial community in duck intestines, laying a theoretical groundwork for understanding the transmission dynamics of ARGs in these ecosystems.
Collapse
Affiliation(s)
- Hongbo Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zixian Fu
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Lingyan Ma
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Lapid R, Motro Y, Craddock H, Salah I, King R, Winner K, Kahila Bar-Gal G, Moran-Gilad J. Abundance of clinically relevant antimicrobial resistance genes in the golden jackal ( Canis aureus) gut. mSphere 2025; 10:e0081924. [PMID: 39945541 PMCID: PMC11934335 DOI: 10.1128/msphere.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.
Collapse
Affiliation(s)
- Roi Lapid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Hillary Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ikram Salah
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Roni King
- Science and Conservation Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Katherine Winner
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
6
|
Meng JX, Li MH, Wang XY, Li S, Zhang Y, Ni HB, Ma H, Liu R, Yan JC, Li XM, Sun YZ, Yang X, Zhang XX. Temporal variability in the diversity, function and resistome landscapes in the gut microbiome of broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117976. [PMID: 40037072 DOI: 10.1016/j.ecoenv.2025.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Understanding the dynamic and stability of gut microbiota over the course of production cycle of broiler chicken can help identify microbial features that associate with better health and productivity. In the present study, we profile the changes in the composition and stability of gut microbiota of commercially raised broilers at nine distinct time points using shotgun metagenomics and culturomics approaches. We demonstrate, within the first week post-hatching, a rapid decline in relative abundance of 122 pioneer microbial species including Bacteroides fragilis, Lachnospira eligens and Ruminococcus gnavus, accompanied by a substantial decrease in both microbial richness and diversity. This was followed by a gradual increase and stabilization in the microbial diversity and population structure that persisted until the broilers reached the marketing age. Throughout the production cycle, key bacterial families such as Lachnospiraceae, Bacteroidaceae, and Ruminococcaceae were identified. However, significant shifts at the lower taxonomic levels occurred at different production stages, influencing the functional capacities and resistance profiles of the microbiota. During the rapid growth phase, enzymes crucial to vitamin and amino acid metabolism dominated, whereas enzymes associated with carbohydrate and energy metabolism were notably more abundant during the fattening stage. Many predicted antibiotic resistance genes were detected in association with typical commensal bacterial species in the gut microbiota, indicating a sustained resistance of the gut microbiota to antibiotic classes such as aminoglycosides and tetracyclines, which persist even in the absence of antibiotic selection pressure. Our research carries important implications for the management and health surveillance of broiler production.
Collapse
Affiliation(s)
- Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Ming-Han Li
- College of Animal Medicine, Jilin Agricultural University Changchun, Jilin Province 130118, PR China
| | - Xiang-Yu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, Hubei Province 430223, PR China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei Province 430223, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Jin-Chu Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Xiao-Man Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Yu-Zhe Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan Province 671000, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China.
| |
Collapse
|
7
|
Mi X, Wu L, Song Y, Wang X, Zhu Z, Zhao J, Su J, Xue J, Lin B, Gao D, Wang F, Feng R, Gao Y, Liu J, Zhang Y. Evolutionary dynamics and regulatory site analysis of AMP family genes in cattle and sheep. Int J Biol Macromol 2025; 290:138922. [PMID: 39708887 DOI: 10.1016/j.ijbiomac.2024.138922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Ruminants possess a rich repository of natural antimicrobial peptides(AMPs) within their bodies, surpassing those found in humans and mice. These peptides, including Defensin, Cathelicidin, and Lysozyme, are integral to the body's innate and adaptive immune responses and represent promising alternatives to antibiotics with significant application potential. RESULTS In the present study, we conducted a systematic analysis of 40 Defensins, 38 Cathelicidins, and 61 Lysozymes in cattle and sheep. Our findings revealed that these peptides have retained functional integrity through the evolutionary history of these species. However, they exhibit unique gene duplication and expansion events when compared to humans and mice, indicating their potent roles in cattle and sheep. Notably, the Cathelicidin gene family experienced the most substantial expansion in these ruminants. The newly expanded genes were highly expressed in tissues and organs such as the tongue surface, intestine, mammary gland, and others, exhibiting tissue-specific preferences. This expression pattern is associated with the unique behaviors and high lactation capacity of ruminants. An in vitro bacterial inhibition assay demonstrated that EBD, LALBA, LYSB, and CATHL4 exhibited significant broad-spectrum antibacterial activity. Additionally, loci dB1, dB5, cB2, cB3, and yB1 were pinpointed as key co-regulatory elements in the antimicrobial peptide motifs within cattle mammary epithelial cells. CONCLUSIONS This research illuminates the structure-function relationship and antimicrobial potency of natural AMP genes in cattle and sheep, providing a theoretical foundation for the development of novel veterinary drugs to treat common bacterial diseases in ruminants and for enhancing animal health care. The identified transcriptional regulatory sites offer a new perspective on the molecular regulation of AMP genes expression, which can be leveraged to improve the disease resistance of domestic animals. This work contributes to a broader understanding of the evolution and regulation of AMP genes, with potential applications for animal health and breeding programs.
Collapse
Affiliation(s)
- Xiaoyu Mi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.; College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Lingyun Wu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Yanliang Song
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Zhenliang Zhu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China; National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Jie Su
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Jiaoxiong Xue
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Benteng Lin
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Dandan Gao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Fei Wang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Rui Feng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| | - Jun Liu
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.; College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shanxi, 712100, China.
| |
Collapse
|
8
|
Zhi Q, Zheng B, Teng K, Xiao Y, Zhou X, Tang Q, Li J, Yin H, Meng D, Liu T. Metagenomic approach reveals the role of bioagents in the environmental dissemination risk of rhizosphere soil antibiotic resistance genes pollution. ENVIRONMENTAL RESEARCH 2024; 263:120090. [PMID: 39374754 DOI: 10.1016/j.envres.2024.120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.
Collapse
Affiliation(s)
- Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Bufan Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410127, China
| | - Kai Teng
- Hunan Province Xiangxi Autonomous Prefecture Tobacco Company, Jishou, 416000, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, 423000, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, 425000, China
| | - Qianjun Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410127, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410127, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Tianbo Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China.
| |
Collapse
|
9
|
Wang T, Luo Y, Kong X, Fang L, Zhu L, Yu B, Zheng P, Huang Z, Mao X, Jie Y, Luo J, Yan H, He J. Multiomics comparative analysis of feces AMRGs of Duroc pigs and Tibetan and the effect of fecal microbiota transplantation on AMRGs upon antibiotic exposure. Microbiol Spectr 2024; 13:e0198324. [PMID: 39612216 PMCID: PMC12054024 DOI: 10.1128/spectrum.01983-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Fecal matter is recognized as both a reservoir and a transmission source for various antimicrobial resistance genes (AMRGs). However, the transcriptional activity of AMRGs in swine feces is not well understood. In addition, the effect of fecal microbiota transplantation (FMT) on the excretion of AMRGs has rarely been reported. Our study explored the diversity, abundance, transcriptional activity, and bacterial hosts of AMRGs in Tibetan and Duroc pig feces using metagenomic and metatranscriptomic sequencing technologies. We discovered a significantly higher genomic abundance of AMRGs in the feces of Duroc pigs compared to Tibetan pigs (P < 0.001), although the transcript levels did not show a significant difference. The results showed that the core composition of AMRGs in pig feces varied considerably, with the most transcriptionally active AMRGs being oqxB, tetQ, Bla1, dfrA1, and amrB. Furthermore, the Firmicutes phylum is the main host of AMRGs. By transplanting fecal flora from Tibetan and Duroc pigs into the intestines of Duroc Landrace Yorkshire (DLY) piglets after acute antibiotic exposure, we found that only Tibetan pig fecal flora significantly reduced AMRGs in the feces of DLY piglets (P < 0.05). The effectiveness of Tibetan pig fecal microorganisms in removing AMRGs from DLY pig feces was mainly influenced by microbial communities, especially the Bacteroidota phylum. These findings offer valuable insights for the prevention and control of AMRG pollution. IMPORTANCE To the best of our knowledge, this study represents the first comprehensive analysis of antimicrobial resistance gene (AMRGs) expression in the fecal microbiota of Tibetan and Duroc pigs, employing an integrated metagenomic and metatranscriptomic approach. Our findings indicate a higher risk of AMRGs transmission in the feces of Duroc pigs compared to Tibetan pigs. Given the escalating antimicrobial resistance crisis, novel therapeutic interventions are imperative to mitigate gut colonization by pathogens and AMRGs. In this regard, we investigated the impact of fecal microbiota from Tibetan and Duroc pig sources on AMRGs excretion in Duroc Landrace Yorkshire (DLY) piglets' feces following acute antibiotic exposure. Remarkably, only fecal microbiota sourced from Tibetan pigs exhibited a reduction in AMRGs excretion in DLY piglets' feces. This underscores the significance of evaluating the presence of AMRGs within donor fecal microbiota for effective AMRGs decolonization strategies.
Collapse
Affiliation(s)
- Tao Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ling Fang
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, Shandong, China
| | - Liping Zhu
- Zhucheng Haotian Pharmaceutical Co., Ltd, Zhucheng, Shandong, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Yu Jie
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Li J, Li C, Han Y, Yang J, Hu Y, Xu H, Zhou Y, Zuo J, Tang Y, Lei C, Li C, Wang H. Bacterial membrane vesicles from swine farm microbial communities harboring and safeguarding diverse functional genes promoting horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175639. [PMID: 39168346 DOI: 10.1016/j.scitotenv.2024.175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance (AMR) poses a significant global health challenge, with swine farms recognized as major reservoirs of antibiotic resistance genes (ARGs). Recently, bacterial membrane vesicles (BMVs) have emerged as novel carriers mediating horizontal gene transfer. However, little is known about the ARGs carried by BMVs in swine farm environments and their transfer potential. This study investigated the distribution, sources, and microbiological origins of BMVs in three key microbial habitats of swine farms (feces, soil, and fecal wastewater), along with the ARGs and mobile genetic elements (MGEs) they harbor. Characterization of BMVs revealed particle sizes ranging from 20 to 500 nm and concentrations from 108 to 1012 particles/g, containing DNA and proteins. Metagenomic sequencing identified BMVs predominantly composed of members of the Proteobacteria phyla, including Pseudomonadaceae, Moraxellaceae, and Enterobacteriaceae, carrying diverse functional genes encompassing resistance to 14 common antibiotics and 74,340 virulence genes. Notably, multidrug resistance, tetracycline, and chloramphenicol resistance genes were particularly abundant. Furthermore, BMVs harbored various MGEs, primarily plasmids, and demonstrated the ability to protect their DNA cargo from degradation and facilitate horizontal gene transfer, including the transmission of resistance genes. In conclusion, this study reveals widespread presence of BMVs carrying ARGs and potential virulence genes in swine farm feces, soil, and fecal wastewater. These findings not only provide new insights into the role of extracellular DNA in the environment but also highlight concerns regarding the gene transfer potential mediated by BMVs and associated health risks.
Collapse
Affiliation(s)
- Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650000, China.
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yulian Hu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yi Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jing Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
11
|
Lan L, Chen Y, Ji H, Wang T, Zhang R, Wong MH, Zhang J. Antibiotic-resistant genes derived from commercial organic fertilizers are transported to balconies of residential buildings by express delivery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:500. [PMID: 39508960 DOI: 10.1007/s10653-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The rise in antibiotic-resistant genes (ARGs) has recently become a pressing issue, with livestock manure identified as a significant source of these genes. Yet, the distribution of fertilizers derived from livestock manure sold online, potentially containing high levels of ARGs and antibiotic-resistant bacteria (ARB), is often not considered. Our study involved a random survey of commercial organic fertilizers available on online marketplaces, focusing on 13 common ARGs and 2 integrons (intI1, intI2). We found significant ARGs linked to sulfonamides, macrolides, and tetracycline in the 20 fertilizer samples we tested. The gene copy numbers for ermC, sul2, and tetL were exceptionally high, reaching up to 1011 copies per gram of fertilizer in specific samples. Additionally, 18 out of 20 samples contained the critical β-lactam resistance genes blaTEM and blaKPC, with gene copy numbers up to 1010 copies/g. Integrons, intI1, and intI2 were present in all samples, with abundances ranging from 103 to 1010 copies/g. We categorized the 20 samples into three types for further analysis: poultry manure, livestock manure, and earthworm manure. Our findings indicated a high presence of ARGs in poultry manure compared to a lower occurrence in earthworm manure. The study also showed a strong correlation between integrons and specific ARGs. This research underscores the potential risk of commercial organic fertilizers as a pathway for spreading ARGs from the animal breeding environment to human settings through express transportation.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Honghu Ji
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, People's Republic of China
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ranran Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| |
Collapse
|
12
|
Zhang Y, Chen W, Yuan Y, Liao X, Mi J. Decreasing light exposure increases the abundance of antibiotic resistance genes in the cecum and feces of laying hens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175275. [PMID: 39111271 DOI: 10.1016/j.scitotenv.2024.175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The gut microbiome plays a crucial role in maintaining animal health and is influenced by various factors, including light exposure; however, the response in laying hens of the gut microbiome to intermittent light regimes and the related impact on antibiotic resistance genes (ARGs) remain poorly understood. In this study, we divided 20-week-old laying hens into two groups. These groups were exposed to either continuous normal light or intermittent light for 8 weeks. The feces and cecal contents of laying hens were collected for analysis. Metagenomic analysis of both feces and cecal content samples revealed significant shifts in the microbial composition and abundance of ARGs under intermittent light exposure compared to normal light exposure (P < 0.05). Furthermore, metabolomic analysis of the cecal contents revealed substantial alterations in the abundance and composition of ARGs and mobile genetic elements (MGEs) in response to intermittent light exposure (P < 0.05). Network analysis revealed intricate co-occurrence patterns among bacterial communities, metabolites, and ARGs, highlighting correlations between Bacteroidetes species, ARGs, and metabolites. Although certain bacterial species showed differential associations, the dominant bacteria carrying ARGs or MGEs had relatively low numbers, suggesting that other bacterial communities may have had a greater influence on ARG dissemination. Moreover, our observations highlight the crucial role of metabolites as mediators between bacterial communities and ARGs, providing novel insights into the dynamics of antibiotic resistance development. Our findings underscore the impact of intermittent light exposure on ARG proliferation in poultry farming and emphasize interconnections among ARGs, bacterial communities, and metabolic pathways. The results underscore the importance of considering both microbial communities and metabolic processes to understand antibiotic resistance in agricultural settings.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China; Institute of Marine Science, University of Auckland, Auckland, 1010, New Zealand
| | - Yilin Yuan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China.
| |
Collapse
|
13
|
Wen R, Yang M, Xu Q, Xu W, Zhou Q, Ma B, Lin X, Lei C, Wang H. Assessing the pig microbial health impacts of smallholder farming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117204. [PMID: 39454358 DOI: 10.1016/j.ecoenv.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The livestock industry has long been a hotspot environment for antibiotic resistance genes, with smallholder farming still holding a significant position in pig farming. However, the microbial antibiotic resistance and pathogen risks in pigs under the smallholder farming model remain unclear. We systematically analyzed the antibiotic resistance and microbial composition of pig feces from smallholder and large-scale farming models in Sichuan. The results indicated a lower abundance of antibiotic resistance genes (ARGs) and similar microbial composition in smallholder farming compared to large-scale farming. Beneficial bacteria were more abundant in small-scale farming, whereas large-scale farming exhibited more ARGs, virulence genes, and human pathogenic bacteria (HPBs), including ESBL Escherichia coli strains closely related to human strains, indicating higher zoonotic risk. The findings suggest that smallholder farming presents a relatively better microbial composition and resistance profile, highlighting its advantages over large-scale farming in terms of pig and human health. It is noteworthy that a considerable proportion of HPBs carrying ARGs still exist in the feces from smallholder farming, and given the openness of fecal handling, there remains a high risk of transmitting ARGs and pathogens to humans.
Collapse
Affiliation(s)
- Renqiao Wen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Ming Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Qiang Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Wei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Quan Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Boheng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Xiaolong Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, China.
| |
Collapse
|
14
|
Shang KM, Elsheikha HM, Ma H, Wei YJ, Zhao JX, Qin Y, Li JM, Zhao ZY, Zhang XX. Metagenomic profiling of cecal microbiota and antibiotic resistome in rodents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117186. [PMID: 39426111 DOI: 10.1016/j.ecoenv.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province, PR China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, Jilin Province, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
15
|
Sun X, Su L, Zhen J, Wang Z, Panhwar KA, Ni SQ. The contribution of swine wastewater on environmental pathogens and antibiotic resistance genes: Antibiotic residues and beyond. CHEMOSPHERE 2024; 364:143263. [PMID: 39236924 DOI: 10.1016/j.chemosphere.2024.143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Swine wastewater application can introduce antibiotics, antibiotic resistance genes (ARGs) into environments. Herein, the full-scale transmission of antibiotics, ARGs and their potential carriers from an intensive swine feedlot to its surroundings were explored. Results showed that lincomycin and doxycycline hydrochloride were dominant antibiotics in this ecosystem. Lincomycin concentration were strongly associated with soil bacterial communities. According to the risk quotient (RQ), lincomycin was identified as posing higher ecological risk in aquatic environments. ARGs and mobile genetic elements (MGEs) abundance in wastewater were reduced after anaerobic treatment. Notably, ARGs composition of environmental samples were clustered into two groups based on if they were directly affected by the wastewater. However, there were no remarkable difference of ARGs abundance among environmental samples. The total abundance of ARGs was positively related to that of MGEs. Pathogens Escherichia coli and Enterococcus revealed strong connection with qnrS, tet and sul. Overall, this study highlights the importance of responsible antibiotics use in livestock production and appropriate treatment technology before agricultural application and discharge.
Collapse
Affiliation(s)
- Xiaojie Sun
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lei Su
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Jianyuan Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Kashif Ali Panhwar
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
16
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
17
|
Bai X, Zhong H, Cui X, Wang T, Gu Y, Li M, Miao X, Li J, Lu L, Xu W, Li D, Sun J. Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174734. [PMID: 39002589 DOI: 10.1016/j.scitotenv.2024.174734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.
Collapse
Affiliation(s)
- Xue Bai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Zhong
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Xiang Cui
- Department of Clinical Animal Medicine, College of Animal Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yiren Gu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, China
| | - Lizhi Lu
- National Center of Technology Innovation for Swine, Chongqing 402460, China
| | - Wenwu Xu
- National Center of Technology Innovation for Swine, Chongqing 402460, China.
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402461, China.
| |
Collapse
|
18
|
Shi Z, Lan Y, Wang Y, Yan X, Ma X, Hassan FU, Rushdi HE, Xu Z, Wang W, Deng T. Multi-omics strategy reveals potential role of antimicrobial resistance and virulence factor genes responsible for Simmental diarrheic calves caused by Escherichia coli. mSystems 2024; 9:e0134823. [PMID: 38742910 PMCID: PMC11237395 DOI: 10.1128/msystems.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yali Lan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
19
|
Zheng J, Liu L, Chen G, Xu W, Huang Y, Lei G, Huang W, Lv H, Yang X. Molecular Characteristics of Staphylococcus aureus Isolates form Food-Poisoning Outbreaks (2011-2022) in Sichuan, China. Foodborne Pathog Dis 2024; 21:323-330. [PMID: 38237168 DOI: 10.1089/fpd.2023.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases in the world. This study aimed to investigate the molecular epidemiological characteristics of Staphylococcus aureus isolated from SFP. A total of 103 S. aureus isolates were obtained during 2011-2022 in Sichuan, southwest China. All isolates were tested for the genomic characteristics and phylogenetic analysis by performing whole-genome sequencing. Multilocus sequence typing analysis showed 17 multilocus sequence types (STs), ST7 (23.30%), ST5 (22.33%), and ST6 (16.50%) being the most common. A total of 45 virulence genes were detected, 22 of which were staphylococcal enterotoxin (SE) genes. Among the identified SE genes, selX exhibited the highest prevalence (86.4%). All isolates carried at least one SE gene. The results of the antimicrobial resistance (AMR) gene detection revealed 41 AMR genes of 12 classes. β-lactam resistance genes (blal, blaR1, blaZ) and tetracycline resistance gene (tet(38)) exhibited a higher prevalence rate. Core genome single nucleotide polymorphism showed phylogenetic clustering of the isolates with the same region, year, and ST. The results indicated that the SFP isolates in southwest of China harbored multiple toxin and resistance genes, with a high prevalence of new SEs. Therefore, it is important to monitor the antimicrobial susceptibility and SE of S. aureus to reduce the potential risks to public health.
Collapse
Affiliation(s)
- Jie Zheng
- College of Public Health, Southwest Medical University, Luzhou, China
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Li Liu
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Guo Chen
- Center for Disease Control and Prevention of Mianyang City, Mianyang, China
| | - Wenping Xu
- Center for Disease Control and Prevention of Luzhou City, Luzhou, China
| | - Yulan Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Xiaorong Yang
- College of Public Health, Southwest Medical University, Luzhou, China
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| |
Collapse
|
20
|
Pan Z, Wang W, Chen J, Chen Z, Avellán-Llaguno RD, Xu W, Duan Y, Liu B, Huang Q. Temporal dynamics of microbial composition and antibiotic resistome in fermentation bed culture pig farms across various ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168728. [PMID: 37992830 DOI: 10.1016/j.scitotenv.2023.168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The discharge from pig farms presents significant challenges to the environment and human health, specifically regarding the dissemination of antimicrobial resistance (AMR). Fermentation bed culture has emerged as an increasingly popular and environmentally friendly pig farming model in China, as it minimizes the release of harmful substances into the environment. However, there remains a limited understanding of the occurrence and dynamics of microbiome and antibiotic resistome in fermentation bed culture. Herein, we collected fermentation bed materials (FBM) from four fermentation bed culture pig farms with varying service ages and investigated their bacterial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), metal resistance genes (MRGs) and potential antibiotic-resistant bacterial hosts through metagenomics. Pseudomonadota, Actinomycetota, Bacteroidota and Bacillota were identified as the dominant phyla present in the FBM. In total, we detected 258 unique ARGs in the FBM samples, with 79 core ARGs shared by all FBM samples, accounting for 95 % of the total ARG abundance. Our results revealed significant variations in microbial communities and ARG profiles across varying service ages of FBM. Compared to long-term FBW, short-term FBM exhibited higher numbers and abundances of ARGs, MRGs and MGEs, along with higher levels of potential bacterial pathogens and high-risk ARGs. Further analysis of metagenome-assembled genome (MAG) indicated that the putative hosts of ARGs primarily belonged to Pseudomonadota, Actinomycetota and Bacillota. Alarmingly, among the 80 recovered ARG-carrying MAGs, 23 MAGs encoded multi-resistance, including clinically significant species that require urgent attention. Overall, this study provided valuable insights into the temporal patterns of antibiotic resistome and bacterial communities within FBM, enhancing our understanding of FBM in pig farming. The findings could potentially contribute to the development of effective strategies for evaluating and regulating fermentation bed culture practices in pig farming.
Collapse
Affiliation(s)
- Zhizhen Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weiyi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Hebei 071002, China
| | - Jingyu Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zheng Chen
- Institue of Plant Protection, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Ricardo David Avellán-Llaguno
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenjuan Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yifang Duan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bo Liu
- Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
21
|
Tong CH, Huo ZP, Diao L, Xiao DY, Zhao RN, Zeng ZL, Xiong WG. Core and variable antimicrobial resistance genes in the gut microbiomes of Chinese and European pigs. Zool Res 2024; 45:189-200. [PMID: 38199973 PMCID: PMC10839664 DOI: 10.24272/j.issn.2095-8137.2023.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 01/12/2024] Open
Abstract
Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.
Collapse
Affiliation(s)
- Cui-Hong Tong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhi-Peng Huo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lu Diao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dan-Yu Xiao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruo-Nan Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, Guangdong 510642, China. E-mail:
| | - Wen-Guang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, Guangdong 510642, China. E-mail:
| |
Collapse
|
22
|
Hu J, Chen J, Ma L, Hou Q, Zhang Y, Kong X, Huang X, Tang Z, Wei H, Wang X, Yan X. Characterizing core microbiota and regulatory functions of the pig gut microbiome. THE ISME JOURNAL 2024; 18:wrad037. [PMID: 38366194 PMCID: PMC10873858 DOI: 10.1093/ismejo/wrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
Domestic pigs (Sus scrofa) are the leading terrestrial animals used for meat production. The gut microbiota significantly affect host nutrition, metabolism, and immunity. Hence, characterization of the gut microbial structure and function will improve our understanding of gut microbial resources and the mechanisms underlying host-microbe interactions. Here, we investigated the gut microbiomes of seven pig breeds using metagenomics and 16S rRNA gene amplicon sequencing. We established an expanded gut microbial reference catalog comprising 17 020 160 genes and identified 4910 metagenome-assembled genomes. We also analyzed the gut resistome to provide an overview of the profiles of the antimicrobial resistance genes in pigs. By analyzing the relative abundances of microbes, we identified three core-predominant gut microbes (Phascolarctobacterium succinatutens, Prevotella copri, and Oscillibacter valericigenes) in pigs used in this study. Oral administration of the three core-predominant gut microbes significantly increased the organ indexes (including the heart, spleen, and thymus), but decreased the gastrointestinal lengths in germ-free mice. The three core microbes significantly enhanced intestinal epithelial barrier function and altered the intestinal mucosal morphology, as was evident from the increase in crypt depths in the duodenum and ileum. Furthermore, the three core microbes significantly affected several metabolic pathways (such as "steroid hormone biosynthesis," "primary bile acid biosynthesis," "phenylalanine, tyrosine and tryptophan biosynthesis," and "phenylalanine metabolism") in germ-free mice. These findings provide a panoramic view of the pig gut microbiome and insights into the functional contributions of the core-predominant gut microbes to the host.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hong Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
23
|
Liang C, Wei Y, Wang X, Gao J, Cui H, Zhang C, Liu J. Analysis of Resistance Gene Diversity in the Intestinal Microbiome of Broilers from Two Types of Broiler Farms in Hebei Province, China. Antibiotics (Basel) 2023; 12:1664. [PMID: 38136698 PMCID: PMC10741226 DOI: 10.3390/antibiotics12121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The crucial reservoir of antibiotic resistance genes (ARGs) within the chicken intestinal microbiome poses a serious threat to both animal and human health. In China, the overuse of antibiotics has significantly contributed to the proliferation of ARGs in the chicken intestinal microbiome, which is a serious concern. However, there has been relatively little research on the diversity of resistance genes in the chicken intestinal microbiome since the implementation of the National Pilot Work Program for Action to Reduce the Use of Veterinary Antimicrobial Drugs in China. The objective of this study was to analyze the diversity of antibiotic resistance genes carried by the chicken intestinal microbiome in both standard farms (SFs), which implement antibiotic reduction and passed national acceptance, and nonstandard farms (NSFs), which do not implement antibiotic reductions, in Hebei Province. Fresh fecal samples of broiler chickens were collected from SFs (n = 4) and NSF (n = 1) and analyzed using high-throughput qPCR technology. Our findings revealed that all five farms exhibited a wide range of highly abundant ARGs, with a total of 201 ARGs and 7 MGEs detected in all fecal samples. The dominant ARGs identified conferred resistance to aminoglycosides, macrolide-lincosamide-streptomycin B (MLSB), and tetracycline antibiotics. Cellular protection mechanisms were found to be the primary resistance mechanism for these ARGs. The analysis of the co-occurrence network demonstrated a significant positive correlation between the abundance of MGEs and ARGs. The SF samples showed a significantly lower relative abundance of certain ARGs than the NSF samples (p < 0.05). The results of this study show that the abundance of ARGs demonstrated a downward trend after the implementation of the National Pilot Work Program for Action to Reduce the Usage of Veterinary Antimicrobial Drugs in Hebei Province, China.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China (J.G.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China (J.G.)
| |
Collapse
|
24
|
Ma L, Song Y, Lyu W, Chen Q, Xiao X, Jin Y, Yang H, Wang W, Xiao Y. Longitudinal metagenomic study reveals the dynamics of fecal antibiotic resistome in pigs throughout the lifetime. Anim Microbiome 2023; 5:55. [PMID: 37941060 PMCID: PMC10634126 DOI: 10.1186/s42523-023-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome. RESULTS We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs. CONCLUSIONS Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanyuan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
25
|
Chen X, Guo Q, Li YY, Song TY, Ge JQ. Metagenomic analysis fecal microbiota of dysentery-like diarrhoea in a pig farm using next-generation sequencing. Front Vet Sci 2023; 10:1257573. [PMID: 37915946 PMCID: PMC10616309 DOI: 10.3389/fvets.2023.1257573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Porcine enteric diseases including swine dysentery involves a wide range of possible aetiologies and seriously damages the intestine of pigs of all ages. Metagenomic next-generation sequencing is commonly used in research for detecting and analyzing pathogens. In this study, the feces of pigs from a commercial swine farm with dysentery-like diarrhea was collected and used for microbiota analysis by next-generation sequencing. While Brachyspira spp. was not detected in diarrheal pig fecal samples, indicating that the disease was not swine dysentery. The quantity of microbial population was extremely lowered, and the bacterial composition was altered with a reduction in the relative abundance of the probiotics organisms, Firmicutes and Bacteroidetes, with an increase in pathogens like Fusobacterium and Proteobacteria, in which the specific bacteria were identified at species-level. Viral pathogens, porcine circovirus type 2, porcine lymphotropic herpesviruses 1, and porcine mastadenovirus A were also detected at pretty low levels. Carbohydrate-active enzymes (CAZy) analysis indicated that the constitute of Firmicutes and Bacteroidete were also changed. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) alignment analysis indicated that the microbiota of diarrheal pigs had a lower ability in utilizing energy sources but were enriched in multi-drug resistance pathways. Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors of Pathogenic Bacteria (VFDB) analysis indicated that genes for elfamycin and sulfonamide resistance and the iron uptake system were enriched in diarrheal pigs. This revealed potential bacterial infection and can guide antibiotic selection for treating dysentery. Overall, our data suggested that alterations in both the population and functional attributes of microbiota in diarrheal pigs with decreased probiotic and increased pathogenic microorganisms. These results will help elucidate the mechanism of dysentery-like diarrhea and the development of approaches to control the disease.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
26
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and Fiber-Diet-Mediated Changes in Antibiotic Resistance Genes in Pig Colon Contents and Feces and Their Driving Factors. Microorganisms 2023; 11:2370. [PMID: 37894028 PMCID: PMC10609257 DOI: 10.3390/microorganisms11102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Comprehensive studies on the effects of genetics and fiber diets on antibiotic resistance genes (ARGs) remain scarce. In this study, we analyzed the profiles of ARGs in colonic contents and fecal samples of Taoyuan, Duroc, and Xiangcun pigs (n = 10) fed at different fiber levels. Through macrogenomic analysis, we identified a total of 850 unique types of ARGs and classified them into 111 drug resistance classes. The abundance of partially drug-resistant ARGs was higher in the colonic contents of local pig breeds under a large-scale farming model. ARGs were found to be widely distributed among a variety of bacteria, predominantly in the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Fiber diets reduce the abundance of ARGs in colonic contents and feces, and mobile genetic elements (MGEs) and short-chain fatty acids (SCFAs) are important drivers in mediating the effect of fiber diets on the abundance of ARGs. In vitro fermentation experiments confirmed that butyric acid significantly reduced the abundance of ARGs. In summary, the results of this study enhanced our understanding of the distribution and composition of ARGs in the colon of different breeds of pigs and revealed that a fiber diet can reduce ARGs in feces through its Butyric acid, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
27
|
Zhou Y, Li J, Huang F, Ai H, Gao J, Chen C, Huang L. Characterization of the pig lower respiratory tract antibiotic resistome. Nat Commun 2023; 14:4868. [PMID: 37573429 PMCID: PMC10423206 DOI: 10.1038/s41467-023-40587-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
Respiratory diseases and its treatments are highly concerned in both the pig industry and human health. However, the composition and distribution of antibiotic resistance genes (ARGs) in swine lower respiratory tract microbiome remain unknown. The relationships of ARGs with mobile genetic elements (MGEs) and lung health are unclear. Here, we characterize antibiotic resistomes of the swine lower respiratory tract microbiome containing 1228 open reading frames belonging to 372 ARGs using 745 metagenomes from 675 experimental pigs. Twelve ARGs conferring resistance to tetracycline are related to an MGE Tn916 family, and multiple types of ARGs are related to a transposase gene tnpA. Most of the linkage complexes between ARGs and MGEs (the Tn916 family and tnpA) are also observed in pig gut microbiomes and human lung microbiomes, suggesting the high risk of these MGEs mediating ARG transfer to both human and pig health. Gammaproteobacteria are the major ARG carriers, within which Escherichia coli harbored >50 ARGs and >10 MGEs. Although the microbial compositions structure the compositions of ARGs, we identify 73 ARGs whose relative abundances are significantly associated with the severity of lung lesions. Our results provide the first overview of ARG profiles in the swine lower respiratory tract microbiome.
Collapse
Affiliation(s)
- Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingquan Li
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fei Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huashui Ai
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Gao
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
28
|
Fu Y, Zhang K, Yang M, Li X, Chen Y, Li J, Xu H, Dhakal P, Zhang L. Metagenomic analysis reveals the relationship between intestinal protozoan parasites and the intestinal microecological balance in calves. Parasit Vectors 2023; 16:257. [PMID: 37525231 PMCID: PMC10388496 DOI: 10.1186/s13071-023-05877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND A close connection between a protozoan parasite and the balance of the other gut microbes of the host has been demonstrated. The calves may be naturally co-infected with many parasites, and the co-effects of parasites on other intestinal microbes of calves remain unclear. This study aims to preliminarily reveal the relationship between intestinal parasites and other intestinal microbes in calves. METHODS Fecal samples were collected from four calves with bloody diarrhea, four calves with watery diarrhea, and seven normal calves, and the microbial flora of the samples were analyzed by whole-genome sequencing. Protozoal parasites were detected in the metagenome sequences and identified using polymerase chain reaction (PCR). RESULTS Cryptosporidium, Eimeria, Giardia, Blastocystis, and Entamoeba were detected by metagenomic analysis, and the identified species were Giardia duodenalis assemblage E, Cryptosporidium bovis, Cryptosporidium ryanae, Eimeria bovis, Eimeria subspherica, Entamoeba bovis, and Blastocystis ST2 and ST10. Metagenomic analysis showed that the intestinal microbes of calves with diarrhea were disordered, especially in calves with bloody diarrhea. Furthermore, different parasites show distinct relationships with the intestinal microecology. Cryptosporidium, Eimeria, and Giardia were negatively correlated with various intestinal bacteria but positively correlated with some fungi. However, Blastocystis and Entamoeba were positively associated with other gut microbes. Twenty-seven biomarkers not only were significantly enriched in bloody diarrhea, watery diarrhea, and normal calves but were also associated with Eimeria, Cryptosporidium, and Giardia. Only Eimeria showed a distinct relationship with seven genera of bacteria, which were significantly enriched in the healthy calves. All 18 genera of fungi were positively correlated with Cryptosporidium, Eimeria, and Giardia, which were also significantly enriched in calves with bloody diarrhea. Functional genes related to parasites and diseases were found mainly in fungi. CONCLUSIONS This study revealed the relationship between intestinal protozoan parasites and the other calf gut microbiome. Different intestinal protozoan parasites have diametrically opposite effects on other gut microecology, which not only affects bacteria in the gut, but also is significantly related to fungi and archaea.
Collapse
Affiliation(s)
- Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Mengyao Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Pitambar Dhakal
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, China.
| |
Collapse
|
29
|
Ji B, Qin J, Ma Y, Liu X, Wang T, Liu G, Li B, Wang G, Gao P. Metagenomic analysis reveals patterns and hosts of antibiotic resistance in different pig farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52087-52106. [PMID: 36826766 DOI: 10.1007/s11356-023-25962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In actual production environments, antibiotic-resistant genes (ARGs) are abundant in pig manure, which can form transmission chains through animals, the environment, and humans, thereby threatening human health. Therefore, based on metagenomic analysis methods, ARGs and mobile genetic elements (MGEs) were annotated in pig manure samples from 6 pig farms in 3 regions of Shanxi Province, and the potential hosts of ARGs were analyzed. The results showed that a total of 14 ARG types were detected, including 182 ARG subtypes, among which tetracycline, phenol, aminoglycoside, and macrolide resistance genes were the main ones. ARG profiles, MGE composition, and microbial communities were significantly different in different regions as well as between different pig farms. In addition, Anaerobutyricum, Butyrivibrio, and Turicibacter were significantly associated with multiple ARGs, and bacteria such as Prevotella, Bacteroides, and the family Oscillospiraceae carried multiple ARGs, suggesting that these bacteria are potential ARG hosts in pig manure. Procrustes analysis showed that bacterial communities and MGEs were significantly correlated with ARG profiles. Variation partitioning analysis results indicated that the combined effect of MGEs and bacterial communities accounted for 64.08% of resistance variation and played an important role in ARG profiles. These findings contribute to our understanding of the dissemination and persistence of ARGs in actual production settings, and offer some guidance for the prevention and control of ARGs contamination.
Collapse
Affiliation(s)
- Bingzhen Ji
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Junjun Qin
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xin Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 100097, China
| | - Tian Wang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 100097, China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
30
|
Kruasuwan W, Jenjaroenpun P, Arigul T, Chokesajjawatee N, Leekitcharoenphon P, Foongladda S, Wongsurawat T. Nanopore Sequencing Discloses Compositional Quality of Commercial Probiotic Feed Supplements. Sci Rep 2023; 13:4540. [PMID: 36941307 PMCID: PMC10027865 DOI: 10.1038/s41598-023-31626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The market for the application of probiotics as a livestock health improvement supplement has increased in recent years. However, most of the available products are quality-controlled using low-resolution techniques and un-curated databases, resulting in misidentification and incorrect product labels. In this work, we deployed two workflows and compared results obtained by full-length 16S rRNA genes (16S) and metagenomic (Meta) data to investigate their reliability for the microbial composition of both liquid and solid forms of animal probiotic products using Oxford Nanopore long-read-only (without short-read). Our result revealed that 16S amplicon data permits to detect the bacterial microbiota even with the low abundance in the samples. Moreover, the 16S approach has the potential to provide species-level resolution for prokaryotes but not for assessing yeast communities. Whereas, Meta data has more power to recover of high-quality metagenome-assembled genomes that enables detailed exploration of both bacterial and yeast populations, as well as antimicrobial resistance genes, and functional genes in the population. Our findings clearly demonstrate that implementing these workflows with long-read-only monitoring could be applied to assessing the quality and safety of probiotic products for animals and evaluating the quality of probiotic products on the market. This would benefit the sustained growth of the livestock probiotic industry.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tantip Arigul
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
31
|
Talat A, Blake KS, Dantas G, Khan AU. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: a Major Reservoir of Antimicrobial Resistance. Microbiol Spectr 2023; 11:e0410222. [PMID: 36786639 PMCID: PMC10100738 DOI: 10.1128/spectrum.04102-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
India is one of the largest consumers and producers of antibiotics and a hot spot for the emergence and proliferation of antimicrobial resistance genes (ARGs). Indian hospital wastewater (HWW) accumulates ARGs from source hospitals and often merges with urban wastewater, with the potential for environmental and human contamination. Despite its putative clinical importance, there is a lack of high-resolution resistome profiling of Indian hospital wastewater, with most studies either relying on conventional PCR-biased techniques or being limited to one city. In this study, we comprehensively analyzed antibiotic resistomes of wastewater from six Indian hospitals distributed in rural and urban areas of northern India through shotgun metagenomics. Our study revealed the predominance of ARGs against aminoglycoside, macrolide, carbapenem, trimethoprim, and sulfonamide antibiotics in all the samples through both read-based analysis and assembly-based analysis. We detected the mobile colistin resistance gene mcr-5.1 for the first time in Indian hospital sewage. blaNDM-1 was present in 4 out of 6 samples and was carried by Pseudomonas aeruginosa in HWW-2, Klebsiella pneumoniae in HWW-4 and HWW-6, and Acinetobacter baumanii in HWW-5. Most ARGs were plasmid-mediated and hosted by Proteobacteria. We identified virulence factors and transposable elements flanking the ARGs, highlighting the role of horizontal gene transmission of ARGs. IMPORTANCE There is a paucity of research on detailed antibiotic resistome and microbiome diversity of Indian hospital wastewater. This study reports the predominance of clinically concerning ARGs such as the beta-lactamases blaNDM and blaOXA and the colistin resistance gene mcr and their association with the microbiome in six different Indian hospital wastewaters of both urban and rural origin. The abundance of plasmid-mediated ARGs and virulence factors calls for urgent AMR crisis management. The lack of proper wastewater management strategies meeting international standards and open drainage systems further complicates the problem of containing the ARGs at these hospitals. This metagenomic study presents the current AMR profile propagating in hospital settings in India and can be used as a reference for future surveillance and risk management of ARGs in Indian hospitals.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
32
|
Li C, Li X, Guo R, Ni W, Liu K, Liu Z, Dai J, Xu Y, Abduriyim S, Wu Z, Zeng Y, Lei B, Zhang Y, Wang Y, Zeng W, Zhang Q, Chen C, Qiao J, Liu C, Hu S. Expanded catalogue of metagenome-assembled genomes reveals resistome characteristics and athletic performance-associated microbes in horse. MICROBIOME 2023; 11:7. [PMID: 36631912 PMCID: PMC9835274 DOI: 10.1186/s40168-022-01448-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the health, diseases, athletic performance, and behaviour of horses. RESULTS Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, including 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagenome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance. CONCLUSION Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource for discovery of performance-enhancing microbes and studies of horse gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Rongjun Guo
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yueren Xu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | | | - Zhuangyuan Wu
- Xinjiang Altay Animal Husbandry and Veterinary Station, Altay, 836501 Xinjiang China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000 Xinjiang China
| | - Bingbing Lei
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chen Liu
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| |
Collapse
|
33
|
Gaire TN, Scott HM, Noyes NR, Ericsson AC, Tokach MD, Menegat MB, Vinasco J, Roenne B, Ray T, Nagaraja TG, Volkova VV. Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. Anim Microbiome 2023; 5:2. [PMID: 36624546 PMCID: PMC9830919 DOI: 10.1186/s42523-022-00222-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.
Collapse
Affiliation(s)
- Tara N. Gaire
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - H. Morgan Scott
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Noelle R. Noyes
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Aaron C. Ericsson
- grid.134936.a0000 0001 2162 3504Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael D. Tokach
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Mariana B. Menegat
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Javier Vinasco
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Boyd Roenne
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Tui Ray
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - T. G. Nagaraja
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Victoriya V. Volkova
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
34
|
Yang X, Zhang T, Lei CW, Wang Q, Huang Z, Chen X, Wang HN. Florfenicol and oxazolidone resistance status in livestock farms revealed by short- and long-read metagenomic sequencing. Front Microbiol 2022; 13:1018901. [PMID: 36338088 PMCID: PMC9632178 DOI: 10.3389/fmicb.2022.1018901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance genes (ARGs) as a novel type of environmental pollutant pose a health risk to humans. Oxazolidinones are one of the most important antibiotics for the treatment of Gram-positive bacterial infections in humans. Although oxazolidinones are not utilized in the livestock industry, florfenicol is commonly used on farms to treat bacterial infections, which may contribute to the spread of the cfr, optrA, and poxtA genes on farms. Using metagenomics sequencing, we looked into the antibiotic resistome context of florfenicol and oxazolidinone in 10 large-scale commercial farms in China. We identified 490 different resistance genes and 1,515 bacterial genera in the fecal samples obtained from 10 farms. Florfenicol-resistant Kurthia, Escherichia, and Proteus were widely present in these samples. The situation of florfenicol and oxazolidone resistance in pig farms is even more severe. The total number of genes and the abundance of drug resistance genes were higher in pigs than in chickens, including optrA and poxtA. All the samples we collected had a high abundance of fexA and floR. Through nanopore metagenomic analysis of the genetic environment, we found that plasmids, integrative and conjugative element (ICE), and transposons (Tn7-like and Tn558) may play an important role in the spread of floR, cfr, and optrA. Our findings suggest that florfenicol and oxazolidinone resistance genes have diverse genetic environments and are at risk of co-transmission with, for example, tetracycline and aminoglycoside resistance genes. The spread of florfenicol- and oxazolidinone-resistant bacteria on animal farms should be continuously monitored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
36
|
Holman DB, Kommadath A, Tingley JP, Abbott DW. Novel Insights into the Pig Gut Microbiome Using Metagenome-Assembled Genomes. Microbiol Spectr 2022; 10:e0238022. [PMID: 35880887 PMCID: PMC9431278 DOI: 10.1128/spectrum.02380-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.
Collapse
Affiliation(s)
- Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|