1
|
Kundu P, Ghosh A. Genome-Scale Community Model-Guided Development of Bacterial Coculture for Lignocellulose Bioconversion. Biotechnol Bioeng 2025; 122:1010-1024. [PMID: 39757383 PMCID: PMC11895418 DOI: 10.1002/bit.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Microbial communities have shown promising potential in degrading complex biopolymers, producing value-added products through collaborative metabolic functionality. Hence, developing synthetic microbial consortia has become a predominant technique for various biotechnological applications. However, diverse microbial entities in a consortium can engage in distinct biochemical interactions that pose challenges in developing mutualistic communities. Therefore, a systems-level understanding of the inter-microbial metabolic interactions, growth compatibility, and metabolic synergisms is essential for developing effective synthetic consortia. This study demonstrated a genome-scale community modeling approach to assess the inter-microbial interaction pattern and screen metabolically compatible bacterial pairs for designing the lignocellulolytic coculture system. Here, we have investigated the pairwise growth and biochemical synergisms among six termite gut bacterial isolates by implementing flux-based parameters, i.e., pairwise growth support index (PGSI) and metabolic assistance (PMA). Assessment of the PGSI and PMA helps screen nine beneficial bacterial pairs that were validated by designing a coculture experiment with lignocellulosic substrates. For the cocultured bacterial pairs, the experimentally measured enzymatic synergisms (DES) showed good coherence with model-derived biochemical compatibility (PMA), which explains the fidelity of the in silico predictions. The highest degree of enzymatic synergisms has been observed in C. denverensis P3 and Brevibacterium sp P5 coculture, where the total cellulase activity has been increased by 53%. Hence, the flux-based assessment of inter-microbial interactions and metabolic compatibility helps select the best bacterial coculture system with enhanced lignocellulolytic functionality. The flux-based parameters (PGSI and PMA) in the proposed community modeling strategy will help optimize the composition of microbial consortia for developing synthetic microcosms for bioremediation, bioengineering, and biomedical applications.
Collapse
Affiliation(s)
- Pritam Kundu
- School of Energy Science and EngineeringIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Amit Ghosh
- School of Energy Science and EngineeringIndian Institute of Technology KharagpurKharagpurWest BengalIndia
- P.K. Sinha Centre for Bioenergy and RenewablesIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| |
Collapse
|
2
|
Sowmeya VG, Sathiavelu M. Biofilm dynamics in space and their potential for sustainable space exploration - A comprehensive review. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:108-121. [PMID: 39864903 DOI: 10.1016/j.lssr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 01/28/2025]
Abstract
Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made. Recent evidence suggests that extraterrestrial environments also fuel the biofilm formation. Understanding the biofilm mechanics under microgravitational conditions is crucial at this stage and could have an astounding impact on inter-planetary missions. This review systematically examines the existing understanding of biofilm development in space and provides insight into how molecules, physiology, or environmental factors influence biofilm formation during microgravitational conditions. In addition, biocontrol strategies targeting the formation and dispersal of biofilms in space environments are explored. In particular, the article highlights the potential benefits of using microbial biofilms in space for bioremediation, life support systems, and biomass production applications.
Collapse
Affiliation(s)
- V G Sowmeya
- School of Biosciences and Technology, VIT, Vellore 632014, India
| | | |
Collapse
|
3
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
4
|
Sweet P, Burroughs M, Jang S, Contreras L. TolRad, a model for predicting radiation tolerance using Pfam annotations, identifies novel radiosensitive bacterial species from reference genomes and MAGs. Microbiol Spectr 2024; 12:e0383823. [PMID: 39235252 PMCID: PMC11466087 DOI: 10.1128/spectrum.03838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/20/2024] [Indexed: 09/06/2024] Open
Abstract
The trait of ionizing radiation (IR) tolerance is variable between bacterium, with species succumbing to acute doses as low as 60 Gy and extremophiles able to survive doses exceeding 10,000 Gy. While survival screens have identified multiple highly radioresistant bacteria, such systemic searches have not been conducted for IR-sensitive bacteria. The taxonomy-level diversity of IR sensitivity is poorly understood, as are genetic elements that influence IR sensitivity. Using the protein domain (Pfam) frequencies from 61 bacterial species with experimentally determined D10 values (the dose at which only 10% of the population survives), we trained TolRad, a random forest binary classifier, to distinguish between radiosensitive (D10 < 200 Gy) and radiation-tolerant (D10 > 200 Gy) bacteria. On untrained species, TolRad had an accuracy of 0.900. We applied TolRad to 152 UniProt-hosted bacterial proteomes associated with the human microbiome, including 37 strains from the ATCC Human Microbiome Collection, and classified 34 species as radiosensitive. Whereas IR-sensitive species (D10 < 200 Gy) in the training data set had been confined to the phylum Proteobacterium, this initial TolRad screen identified radiosensitive bacteria in two additional phyla. We experimentally validated the predicted radiosensitivity of a Bacteroidota species from the human microbiome. To demonstrate that TolRad can be applied to metagenome-assembled genomes (MAGs), we tested the accuracy of TolRad on Egg-NOG assembled proteomes (0.965) and partial proteomes. Finally, three collections of MAGs were screened using TolRad, identifying further phyla with radiosensitive species and suggesting that environmental conditions influence the abundance of radiosensitive bacteria. IMPORTANCE Bacterial species have vast genetic diversity, allowing for life in extreme environments and the conduction of complex chemistry. The ability to harness the full potential of bacterial diversity is hampered by the lack of high-throughput experimental or bioinformatic methods for characterizing bacterial traits. Here, we present a computational model that uses de novo-generated genome annotations to classify a bacterium as tolerant of ionizing radiation (IR) or as radiosensitive. This model allows for rapid screening of bacterial communities for low-tolerance species that are of interest for both mechanistic studies into bacterial sensitivity to IR and biomarkers of IR exposure.
Collapse
Affiliation(s)
- Philip Sweet
- McKetta Department of
Chemical Engineering, University of Texas at
Austin, Austin,
Texas, USA
| | - Matthew Burroughs
- McKetta Department of
Chemical Engineering, University of Texas at
Austin, Austin,
Texas, USA
| | - Sungyeon Jang
- McKetta Department of
Chemical Engineering, University of Texas at
Austin, Austin,
Texas, USA
| | - Lydia Contreras
- McKetta Department of
Chemical Engineering, University of Texas at
Austin, Austin,
Texas, USA
| |
Collapse
|
5
|
Palanikumar I, Sinha H, Raman K. Panera: An innovative framework for surmounting uncertainty in microbial community modeling using pan-genera metabolic models. iScience 2024; 27:110358. [PMID: 39092173 PMCID: PMC11292516 DOI: 10.1016/j.isci.2024.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
Utilization of 16S rRNA data in constraint-based modeling to characterize microbial communities confronts a major hurdle of lack of species-level resolution, impeding the construction of community models. We introduce "Panera," an innovative framework designed to model communities under this uncertainty and yet perform metabolic inferences using pan-genus metabolic models (PGMMs). We demonstrated PGMMs' utility for comprehending the metabolic capabilities of a genus and in characterizing community models using amplicon data. The unique, adaptable nature of PGMMs unlocks their potential in building hybrid communities, combining genome-scale metabolic models (GSMMs) and PGMMs. Notably, these models provide predictions comparable to the standard GSMM-based community models, while achieving a nearly 46% reduction in error compared to the genus model-based communities. In essence, "Panera" presents a potent and effective approach to aid in metabolic modeling by enabling robust predictions of community metabolic potential when dealing with amplicon data, and offers insights into genus-level metabolic landscapes.
Collapse
Affiliation(s)
- Indumathi Palanikumar
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai 600 036, India
| |
Collapse
|
6
|
Mirzaei S, Tefagh M. GEM-based computational modeling for exploring metabolic interactions in a microbial community. PLoS Comput Biol 2024; 20:e1012233. [PMID: 38900842 PMCID: PMC11218945 DOI: 10.1371/journal.pcbi.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/02/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Microbial communities play fundamental roles in every complex ecosystem, such as soil, sea and the human body. The stability and diversity of the microbial community depend precisely on the composition of the microbiota. Any change in the composition of these communities affects microbial functions. An important goal of studying the interactions between species is to understand the behavior of microbes and their responses to perturbations. These interactions among species are mediated by the exchange of metabolites within microbial communities. We developed a computational model for the microbial community that has a separate compartment for exchanging metabolites. This model can predict possible metabolites that cause competition, commensalism, and mutual interactions between species within a microbial community. Our constraint-based community metabolic modeling approach provides insights to elucidate the pattern of metabolic interactions for each common metabolite between two microbes. To validate our approach, we used a toy model and a syntrophic co-culture of Desulfovibrio vulgaris and Methanococcus maripaludis, as well as another in co-culture between Geobacter sulfurreducens and Rhodoferax ferrireducens. For a more general evaluation, we applied our algorithm to the honeybee gut microbiome, composed of seven species, and the epiphyte strain Pantoea eucalypti 299R. The epiphyte strain Pe299R has been previously studied and cultured with six different phyllosphere bacteria. Our algorithm successfully predicts metabolites, which imply mutualistic, competitive, or commensal interactions. In contrast to OptCom, MRO, and MICOM algorithms, our COMMA algorithm shows that the potential for competitive interactions between an epiphytic species and Pe299R is not significant. These results are consistent with the experimental measurements of population density and reproductive success of the Pe299R strain.
Collapse
Affiliation(s)
- Soraya Mirzaei
- Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
| | - Mojtaba Tefagh
- Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
- Center for Information Systems & Data Science, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Sengupta P, Muthamilselvi Sivabalan SK, Singh NK, Raman K, Venkateswaran K. Genomic, functional, and metabolic enhancements in multidrug-resistant Enterobacter bugandensis facilitating its persistence and succession in the International Space Station. MICROBIOME 2024; 12:62. [PMID: 38521963 PMCID: PMC10960378 DOI: 10.1186/s40168-024-01777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO2 levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections. RESULTS Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS. CONCLUSIONS Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA.
| |
Collapse
|
8
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
9
|
Gottel NR, Hill MS, Neal MJ, Allard SM, Zengler K, Gilbert JA. Biocontrol in built environments to reduce pathogen exposure and infection risk. THE ISME JOURNAL 2024; 18:wrad024. [PMID: 38365248 PMCID: PMC10848226 DOI: 10.1093/ismejo/wrad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
The microbiome of the built environment comprises bacterial, archaeal, fungal, and viral communities associated with human-made structures. Even though most of these microbes are benign, antibiotic-resistant pathogens can colonize and emerge indoors, creating infection risk through surface transmission or inhalation. Several studies have catalogued the microbial composition and ecology in different built environment types. These have informed in vitro studies that seek to replicate the physicochemical features that promote pathogenic survival and transmission, ultimately facilitating the development and validation of intervention techniques used to reduce pathogen accumulation. Such interventions include using Bacillus-based cleaning products on surfaces or integrating bacilli into printable materials. Though this work is in its infancy, early research suggests the potential to use microbial biocontrol to reduce hospital- and home-acquired multidrug-resistant infections. Although these techniques hold promise, there is an urgent need to better understand the microbial ecology of built environments and to determine how these biocontrol solutions alter species interactions. This review covers our current understanding of microbial ecology of the built environment and proposes strategies to translate that knowledge into effective biocontrol of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Neil R Gottel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
| | - Megan S Hill
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Maxwell J Neal
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Sarah M Allard
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Karsten Zengler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, United States
| | - Jack A Gilbert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
10
|
Zhang Y, Li Z, Peng Y, Guo Z, Wang H, Wei T, Shakir Y, Jiang G, Deng Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME COMMUNICATIONS 2024; 4:ycae013. [PMID: 38495633 PMCID: PMC10942772 DOI: 10.1093/ismeco/ycae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhidong Li
- Office of International Business and Technology Application, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Guohua Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Zaccaria T, de Jonge MI, Domínguez-Andrés J, Netea MG, Beblo-Vranesevic K, Rettberg P. Survival of Environment-Derived Opportunistic Bacterial Pathogens to Martian Conditions: Is There a Concern for Human Missions to Mars? ASTROBIOLOGY 2024; 24:100-113. [PMID: 38227836 DOI: 10.1089/ast.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (Burkholderia cepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.
Collapse
Affiliation(s)
- Tommaso Zaccaria
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristina Beblo-Vranesevic
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| | - Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
12
|
Miliotis G, McDonagh F, Singh NK, O'Connor L, Tuohy A, Morris D, Venkateswaran K. Genomic analysis reveals the presence of emerging pathogenic Klebsiella lineages aboard the International Space Station. Microbiol Spectr 2023; 11:e0189723. [PMID: 37966203 PMCID: PMC10715203 DOI: 10.1128/spectrum.01897-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The International Space Station (ISS) is a unique, hermetically sealed environment, subject to environmental pressures not encountered on Earth, including microgravity and radiation (cosmic ionising/UV). While bacteria's adaptability during spaceflight remains elusive, recent research suggests that it may be species and even clone-specific. Considering the documented spaceflight-induced suppression of the human immune system, a deper understanding of the genomics of potential human pathogens in space could shed light on species and lineages of medical astromicrobiological significance. In this study, we used hybrid assembly methods and comparative genomics to deliver a comprehensive genomic characterization of 10 Klebsiella isolates retrieved from the ISS. Our analysis unveiled that Klebsiella quasipneumoniae ST138 demonstrates both spatial and temporal persistence aboard the ISS, showing evidence of genomic divergence from its Earth-based ST138 lineage. Moreover, we characterized plasmids from Klebsiella species of ISS origin, which harbored genes for disinfectant resistance and enhanced thermotolerance, suggestin possible adaptive advantages. Furthermore, we identified a mobile genetic element containing a hypervirulence-associated locus belonging to a Klebsiella pneumoniae isolate of the "high-risk" ST101 clone. Our work provides insights into the adaptability and persistence of Klebsiella species during spaceflight, highlighting the importance of understanding the dynamics of potential pathogenic bacteria in such environments.
Collapse
Affiliation(s)
- Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Alma Tuohy
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenomics, phenotypic, and functional traits of five novel (Earth-derived) bacterial species isolated from the International Space Station and their prevalence in metagenomes. Sci Rep 2023; 13:19207. [PMID: 37932283 PMCID: PMC10628120 DOI: 10.1038/s41598-023-44172-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenetic affiliations and genomic characterization of novel bacterial species and their abundance in the International Space Station. RESEARCH SQUARE 2023:rs.3.rs-3126314. [PMID: 37461605 PMCID: PMC10350232 DOI: 10.21203/rs.3.rs-3126314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D. Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Kuppa Baskaran DK, Umale S, Zhou Z, Raman K, Anantharaman K. Metagenome-based metabolic modelling predicts unique microbial interactions in deep-sea hydrothermal plume microbiomes. ISME COMMUNICATIONS 2023; 3:42. [PMID: 37120693 PMCID: PMC10148797 DOI: 10.1038/s43705-023-00242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel primary production and form diverse and complex microbial communities. However, microbial interactions that drive these complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system in the Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic models from metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene transfer (HGT) events within the community. We highlight possible archaea-archaea and archaea-bacteria interactions and their contributions to the robustness of the community. Cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S were among the most exchanged metabolites. These interactions enhanced the metabolic capabilities of the community by exchange of metabolites that cannot be produced by any other community member. Archaea from the DPANN group stood out as key microbes, benefiting significantly as acceptors in the community. Overall, our study provides key insights into the microbial interactions that drive community structure and organisation in complex hydrothermal plume microbiomes.
Collapse
Affiliation(s)
- Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Shreyansh Umale
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| | | |
Collapse
|
16
|
Chan K, Arumugam A, Markham C, Jenson R, Wu HW, Wong S. The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. MICROMACHINES 2023; 14:mi14050937. [PMID: 37241562 DOI: 10.3390/mi14050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a microgravity-compatible, automated versatile sample preparation platform (VSPP). The VSPP was built by modifying entry-level 3D printers that cost USD 200-USD 800. In addition, 3D printing was also used to prototype microgravity-compatible reagent wells and cartridges. The VSPP's primary function would enable NASA to rapidly identify microorganisms that could affect crew safety. It has the potential to process samples from various sample matrices (swab, potable water, blood, urine, etc.), thus yielding high-quality nucleic acids for downstream molecular detection and identification in a closed-cartridge system. When fully developed and validated in microgravity environments, this highly automated system will allow labor-intensive and time-consuming processes to be carried out via a turnkey, closed system using prefilled cartridges and magnetic particle-based chemistries. This manuscript demonstrates that the VSPP can extract high-quality nucleic acids from urine (Zika viral RNA) and whole blood (human RNase P gene) in a ground-level laboratory setting using nucleic acid-binding magnetic particles. The viral RNA detection data showed that the VSPP can process contrived urine samples at clinically relevant levels (as low as 50 PFU/extraction). The extraction of human DNA from eight replicate samples showed that the DNA extraction yield is highly consistent (there was a standard deviation of 0.4 threshold cycle when the extracted and purified DNA was tested via real-time polymerase chain reaction). Additionally, the VSPP underwent 2.1 s drop tower microgravity tests to determine if its components are compatible for use in microgravity. Our findings will aid future research in adapting extraction well geometry for 1 g and low g working environments operated by the VSPP. Future microgravity testing of the VSPP in the parabolic flights and in the ISS is planned.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Cole Markham
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Hao-Wei Wu
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| |
Collapse
|
17
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
18
|
Sengupta P, Sivabalan SKM, Mahesh A, Palanikumar I, Kuppa Baskaran DK, Raman K. Big Data for a Small World: A Review on Databases and Resources for Studying Microbiomes. J Indian Inst Sci 2023; 103:1-17. [PMID: 37362854 PMCID: PMC10073628 DOI: 10.1007/s41745-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 06/28/2023]
Abstract
Microorganisms are ubiquitous in nature and form complex community networks to survive in various environments. This community structure depends on numerous factors like nutrient availability, abiotic factors like temperature and pH as well as microbial composition. Categorising accessible biomes according to their habitats would help in understanding the complexity of the environment-specific communities. Owing to the recent improvements in sequencing facilities, researchers have started to explore diverse microbiomes rapidly and attempts have been made to study microbial crosstalk. However, different metagenomics sampling, preprocessing, and annotation methods make it difficult to compare multiple studies and hinder the recycling of data. Huge datasets originating from these experiments demand systematic computational methods to extract biological information beyond microbial compositions. Further exploration of microbial co-occurring patterns across the biomes could help us in designing cross-biome experiments. In this review, we catalogue databases with system-specific microbiomes, discussing publicly available common databases as well as specialised databases for a range of microbiomes. If the new datasets generated in the future could maintain at least biome-specific annotation, then researchers could use those contemporary tools for relevant and bias-free analysis of complex metagenomics data.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | | | - Amrita Mahesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Indumathi Palanikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
19
|
Kundu P, Ghosh A. Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. Comput Biol Med 2023; 154:106600. [PMID: 36739820 DOI: 10.1016/j.compbiomed.2023.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Specialized microbial communities in the fungus-farming termite gut and fungal comb microbiome help maintain host nutrition through interactive biochemical activities of complex carbohydrate degradation. Numerous research studies have been focused on identifying the microbial species in the termite gut and fungal comb microbiota, but the community-wide metabolic interaction patterns remain obscure. The inter-microbial metabolic interactions in the community environment are essential for executing biochemical processes like complex carbohydrate degradation and maintaining the host's physicochemical homeostasis. Recent progress in high-throughput sequencing techniques and mathematical modeling provides suitable platforms for constructing multispecies genome-scale community metabolic models that can render sound knowledge about microbial metabolic interaction patterns. Here, we have implemented the genome-scale metabolic modeling strategy to map the relationship between genes, proteins, and reactions of 12 key bacterial species from fungal cultivating termite gut and fungal comb microbiota. The resulting individual genome-scale metabolic models (GEMs) have been analyzed using flux balance analysis (FBA) to optimize the metabolic flux distribution pattern. Further, these individual GEMs have been integrated into genome-scale community metabolic models where a heuristics-based computational procedure has been employed to track the inter-microbial metabolic interactions. Two separate genome-scale community metabolic models were reconstructed for the O. badius gut and fungal comb microbiome. Analysis of the community models showed up to ∼167% increased flux range in lignocellulose degradation, amino acid biosynthesis, and nucleotide metabolism pathways. The inter-microbial metabolic exchange of amino acids, SCFAs, and small sugars was also upregulated in the multispecies community for maximum biomass formation. The flux variability analysis (FVA) has also been performed to calculate the feasible flux range of metabolic reactions. Furthermore, based on the calculated metabolic flux values, newly defined parameters, i.e., pairwise metabolic assistance (PMA) and community metabolic assistance (CMA) showed that the microbial species are getting up to 15% higher metabolic benefits in the multispecies community compared to pairwise growth. Assessment of the inter-microbial metabolic interaction patterns through pairwise growth support index (PGSI) indicated an increased mutualistic interaction in the termite gut environment compared to the fungal comb. Thus, this genome-scale community modeling study provides a systematic methodology to understand the inter-microbial interaction patterns with several newly defined parameters like PMA, CMA, and PGSI. The microbial metabolic assistance and interaction patterns derived from this computational approach will enhance the understanding of combinatorial microbial activities and may help develop effective synergistic microcosms to utilize complex plant polymers.
Collapse
Affiliation(s)
- Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|