1
|
Yuan J, Yang J, Sun Y, Meng Y, He Z, Zhang W, Dang L, Song Y, Xu K, Lv N, Zhang Z, Guo P, Yin H, Shi W. An early microbial landscape: inspiring endeavor from the China Space Station Habitation Area Microbiome Program (CHAMP). SCIENCE CHINA. LIFE SCIENCES 2025; 68:1541-1554. [PMID: 40178790 DOI: 10.1007/s11427-024-2894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
China's progressing space program, as evidenced by the formal operation of the China Space Station (CSS), has provided great opportunities for various space missions. Since microbes can present potential risks to human health and the normal operation of spacecraft, the study on space-microorganisms in the CSS is always a matter of urgency. In addition, the knowledge on the interactions between microorganisms, astronauts, and spacecraft equipment will shed light on our understanding of life activities in space and a closed environment. Here, we present the first comprehensive report on the microbial communities aboard the CSS based on the results of the first two survey missions of the CSS Habitation Area Microbiome Program (CHAMP). By combining metagenomic and cultivation methods, we have discovered that, in the early stage of the CSS, microbial communities are dominated by human-associated microbes, with strikingly large differences in both composition and functional diversity compared to those found on the International Space Station (ISS). While the samples from two missions of CHAMP possessed substantial differences in microbial composition, no significant difference in functional diversity was found, although signs of accumulating antibiotic resistance were evident. Meanwhile, strong bacteria co-occurrence was noted within the station's microbiota. At the strain level, environmental isolates from the CSS exhibited numerous genomic mutations compared to those from the Assembly, Integration, and Test (AIT) center, potentially linked to the adaptation to the unique conditions of space. Besides, the intraspecies variation within four high-abundance species suggests possible propagation and residency effects between sampling sites. In summary, this study offers critical insights that not only advance our understanding of space microbiology but also lay the groundwork for effective microbial management in future long-term human space missions.
Collapse
Affiliation(s)
- Junxia Yuan
- Shenzhou Space Biotechnology Group, Beijing, 100086, China
| | - Jinlu Yang
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Yue Sun
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Meng
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ziwei He
- Shenzhou Space Biotechnology Group, Beijing, 100086, China
| | - Wende Zhang
- Shenzhou Space Biotechnology Group, Beijing, 100086, China
| | - Lei Dang
- Shenzhou Space Biotechnology Group, Beijing, 100086, China
| | - Yan Song
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Kanyan Xu
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Na Lv
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziding Zhang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pei Guo
- Beijing Institute of Spacecraft System Engineering, Beijing, 100094, China
| | - Hong Yin
- Shenzhou Space Biotechnology Group, Beijing, 100086, China.
| | - Wenyu Shi
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Hill MS, Minnis VR, Simpson AC, Salas Garcia MC, Bone D, Chung RK, Rushton E, Hameed A, Rekha PD, Gilbert JA, Venkateswaran K. Genomic description of Microbacterium mcarthurae sp. nov., a bacterium collected from the International Space Station that exhibits unique antimicrobial-resistant and virulent phenotype. mSystems 2025:e0053725. [PMID: 40391897 DOI: 10.1128/msystems.00537-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
A novel bacterial strain, designated as 1F8SW-P5T, was isolated from the wall of the crew quarters on the International Space Station. Cells were Gram-staining-positive, strictly aerobic, non-spore-forming, chemoheterotrophic, and mesophilic rods exhibiting catalase-positive and oxidase-negative reactivity. Strain 1F8SW-P5T shared the highest 16S rRNA gene similarity with Microbacterium proteolyticum CECT 8356T (99.34%) and the highest gyrB gene similarity with Microbacterium algihabitans KSW2-21T (91.34%). Its strongest matches via average nucleotide identity and DNA-DNA hybridization were to Microbacterium hydrothermale CGMCC_1.12512T (84.36% and 25.80%, respectively). 1F8SW-P5T formed a distinct lineage during phylogenetic and phylogenomic analysis. The biochemical, phenotypic, chemotaxonomic, and phylogenomic features substantiated the affiliation to 1F8SW-P5T as a new species of Microbacterium, for which we propose the name Microbacterium mcarthurae, with the type strain 1F8SW-P5T (=DSM 115934T =NRRL B-65667T). Based on metagenomic data collected during the Microbial Tracking mission series, M. mcarthurae was identified from all surfaces (n = 8) over an 8-year period, with an increase in relative abundance over time. This is of potential concern, as we observed resistance to all tested fluoroquinolone antibiotics (n = 6), two β-lactam antibiotics, and one macrolide antibiotic, which was not predicted based on isolate or plasmid genotype alone. Furthermore, we found an increase in virulence, compared to Escherichia coli, when tested within a Caenorhabditis elegans model. This pathogenic profile highlights the importance of continued characterization of spacecraft-associated microbes, the characterization of previously unidentified antimicrobial resistance and virulence genes, and the implementation of targeted mitigation strategies during spaceflight. IMPORTANCE Crew members are at an increased risk for exposure to and infection by pathogenic microbes during spaceflight. Therefore, it is imperative to characterize the species that are able to colonize and persist on spacecraft, how those organisms change in abundance and distribution over time, and their genotypic potential for and phenotypic expression of pathogenic traits (i.e., whether they encode for or exhibit traits associated with antibiotic resistance and/or virulence). Here, we describe a novel species of Microbacterium collected from the crew quarters on the International Space Station (ISS), 1F8SW-P5T, for which we propose the name Microbacterium mcarthurae. M. mcarthurae was found to be distributed throughout the ISS with an increase in relative abundance over time. Additionally, this bacterium exhibits a unique antibiotic resistance phenotype that was not predicted from whole-genome sequencing, as well as increased virulence, suggesting the need for the identification of previously undescribed antimicrobial resistance genes and monitoring/mitigation during spaceflight.
Collapse
Affiliation(s)
- Megan S Hill
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Vanessa R Minnis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Davis Bone
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- College of Arts and Sciences, Johnson and Wales University, Providence, Rhode Island, USA
- College of Engineering and Design, University of the West of England, Bristol, England, United Kingdom
| | - Ryan K Chung
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ella Rushton
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- School of Applied Sciences, University of the West of England, Bristol, England, United Kingdom
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Center, Yenepoya (Deemto be University), Mangalore, India
| | - Punchappady D Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Center, Yenepoya (Deemto be University), Mangalore, India
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Salido RA, Zhao HN, McDonald D, Mannochio-Russo H, Zuffa S, Oles RE, Aron AT, El Abiead Y, Farmer S, González A, Martino C, Mohanty I, Parker CW, Patel L, Portal Gomes PW, Schmid R, Schwartz T, Zhu J, Barratt MR, Rubins KH, Chu H, Karouia F, Venkateswaran K, Dorrestein PC, Knight R. The International Space Station has a unique and extreme microbial and chemical environment driven by use patterns. Cell 2025; 188:2022-2041.e23. [PMID: 40020666 PMCID: PMC12068931 DOI: 10.1016/j.cell.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Space habitation provides unique challenges in built environments isolated from Earth. We produced a 3D map of the microbes and metabolites throughout the United States Orbital Segment (USOS) of the International Space Station (ISS) with 803 samples collected during space flight, including controls. We find that the use of each of the nine sampled modules within the ISS strongly drives the microbiology and chemistry of the habitat. Relating the microbiology to other Earth habitats, we find that, as with human microbiota, built environment microbiota also align naturally along an axis of industrialization, with the ISS providing an extreme example of an industrialized environment. We demonstrate the utility of culture-independent sequencing for microbial risk monitoring, especially as the location of sequencing moves to space. The resulting resource of chemistry and microbiology in the space-built environment will guide long-term efforts to maintain human health in space for longer durations.
Collapse
Affiliation(s)
- Rodolfo A Salido
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Renee E Oles
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sawyer Farmer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Zhu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA; Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA; Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, USA.
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Müller DW, Pauly C, Brix K, Kautenburger R, Mücklich F. Modifying the antibacterial performance of Cu surfaces by topographic patterning in the micro- and nanometer scale. BIOMATERIALS ADVANCES 2025; 169:214184. [PMID: 39813739 DOI: 10.1016/j.bioadv.2025.214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus. The fabrication of line-like periodic surface patterns in the scale range of single bacterial cells was achieved utilizing ultrashort pulsed direct laser interference patterning. These patterns create both favorable and unfavorable topographies for bacterial adhesion. The variation in bacteria/surface interaction is monitored in terms of strain-specific bactericidal efficiency and the role of corrosive forces driving quantitative Cu ion release. The investigation revealed that bacterial deactivation on Cu surfaces can be either enhanced or decreased by intentional topography modifications, independent of Cu ion emission, with strain-specific deviations in effective pattern scales observed. The results of this study indicate the potential of targeted topographic surface functionalization to optimize antimicrobial surface designs, enabling strain-specific decontamination strategies.
Collapse
Affiliation(s)
- Daniel Wyn Müller
- Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany; SurFunction GmbH, 66123 Saarbrücken, Germany.
| | - Christoph Pauly
- Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany
| | - Kristina Brix
- Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, 66123 Saarbrücken, Germany
| | - Ralf Kautenburger
- Department of Inorganic Solid-State Chemistry, Elemental Analysis, Saarland University, 66123 Saarbrücken, Germany
| | - Frank Mücklich
- Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Zhang Y, Peng Y, Qu X, Zhang L, Wei T, Wang H, Guo Z, Liu W, Wang X. On-orbit microbial succession patterns of the China Space Station during the construction period. MICROBIOME 2025; 13:73. [PMID: 40075536 PMCID: PMC11899660 DOI: 10.1186/s40168-024-02025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/25/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND The China Space Station (CSS) modules feature many areas that are difficult to clean and thus susceptible to microbial outbreaks. A new sampling method utilizing an equivalent material sheet was applied to characterize the diversity of microbes that accumulated in inaccessible areas in orbit on the CSS. Equivalent material sheet is a membrane made of the same material as the wall of the module. RESULTS Fifty samples were collected from interior surfaces (work, sleeping, and sanitary areas) of the Tianhe core module and the Wentian and Mengtian experimental modules, covering three flights by the Shenzhou (SZ)-12 to SZ-14 astronaut crews from 2021 to 2022. The numbers of culturable bacteria and fungi that accumulated during the on-orbit periods of each flight ranged from 0 to 2.83 × 109 colony-forming units/100 cm2. The number of bacteria detected by quantitative PCR (qPCR) ranged from 1.24 × 105 to 2.59 × 109 rRNA gene copies/100 cm2, with an average viability of 65.08%. A total of 103 bacterial strains and 27 fungal strains were cultured and isolated. The dominant culturable microorganisms were mainly from the genera Bacillus, Staphylococcus, Aspergillus, Cladosporium, and Penicillium. High-throughput sequencing results showed that the predominant bacteria were Pseudomonas, Stenotrophomonas, Methylobacterium-Methylorubrum, Sphingomonas, Bacillus, Staphylococcus, and Nocardiopsis. The microbial diversity in each module varied significantly with sampling time and sampling area. In the early stage of CSS construction with the SZ-12 crew, the microbial species evenness in the modules was high; later, with the SZ-13 crew, Pseudomonas began to appear as the dominant microorganism. More than half (58.80%) of the bacteria on module surfaces originated from the human skin and oral environments. Lactobacillus was present in all areas of the three modules at all sampling times. The biomarker bacteria Stenotrophomonas sp., isolated from the work area in the Tianhe core module, are typically derived from plants. SourceTracker analysis indicated that most of the microbes in the orbiting CSS came from human bodies, and that microbial diversity was significantly altered with each crew change. CONCLUSION Future efforts at microbial prevention and control on orbit should emphasize the human and plant origins of microbes. Information on the microbial diversity in the condensate zone could be useful to guide the development of new strategies to prevent and control microbes during space flight. Video Abstract.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China.
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China
| | - Xi Qu
- Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing, 100094, China
| | - Lantao Zhang
- Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing, 100094, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan district, Xuzhou, Jiangsu Province, 221116, China.
| | - Xiang Wang
- Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing, 100094, China.
| |
Collapse
|
6
|
Sowmeya VG, Sathiavelu M. Biofilm dynamics in space and their potential for sustainable space exploration - A comprehensive review. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:108-121. [PMID: 39864903 DOI: 10.1016/j.lssr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 01/28/2025]
Abstract
Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made. Recent evidence suggests that extraterrestrial environments also fuel the biofilm formation. Understanding the biofilm mechanics under microgravitational conditions is crucial at this stage and could have an astounding impact on inter-planetary missions. This review systematically examines the existing understanding of biofilm development in space and provides insight into how molecules, physiology, or environmental factors influence biofilm formation during microgravitational conditions. In addition, biocontrol strategies targeting the formation and dispersal of biofilms in space environments are explored. In particular, the article highlights the potential benefits of using microbial biofilms in space for bioremediation, life support systems, and biomass production applications.
Collapse
Affiliation(s)
- V G Sowmeya
- School of Biosciences and Technology, VIT, Vellore 632014, India
| | | |
Collapse
|
7
|
Cheng L, Li Y, Yan J. Space biological and human survival: Investigations into plants, animals, microorganisms and their components and bioregenerative life support systems. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:143-153. [PMID: 39864907 DOI: 10.1016/j.lssr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 01/28/2025]
Abstract
Space life science has been a frontier discipline in the life sciences, aiming to study the life phenomena of earth organisms and their activity patterns under the special environment of space. This review summarizes studies in various key topics in space life science, namely, how microbiome changes in humans and plants, the development of space agriculture and the use of animal, plant and cell models to study the effect of space environments on physiology. We highlight the new possibilities of using high-quality protein crystals uniquely available when grown under space conditions to aid drug development on earth, and the state-of-the-art Bioregenerative Life Support Systems (BLSS) to achieve long term human survival in space.
Collapse
Affiliation(s)
- Lin Cheng
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China
| | - Yitong Li
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China
| | - Jing Yan
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Arndt F, Siems K, Walker SV, Bryan NC, Leuko S, Moeller R, Boschert AL. Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity. NPJ Microgravity 2024; 10:103. [PMID: 39537632 PMCID: PMC11561132 DOI: 10.1038/s41526-024-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.
Collapse
Affiliation(s)
- Franca Arndt
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.
| | - Katharina Siems
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Sarah V Walker
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Noelle C Bryan
- Department of Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Leuko
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Alessa L Boschert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Cho TJ, Rhee MS. Space food production on microbiological safety: Key considerations for the design of Hazard Analysis and Critical Control Points (HACCP) plan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:287-381. [PMID: 40023563 DOI: 10.1016/bs.afnr.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Although diet in space has relied on the sterilized products transported from earth, on-site space food production (e.g., farming, nutritional bioregeneration, bioculture foods, cooking) have been suggested to establish sustainable food supply system. This book chapter describes the key consideration for the design of hazard analysis and critical control points plan optimized for food produced and prepared in outer space. Technical advances in the food production during spaceflight were summarized to categorize the types of on-site space food production. Overall results of previous research regarding microbial monitoring of contaminants onboard the habitat of astronauts (single bacterial isolation and community analysis) and the alteration of physiological characteristics of host-pathogen-food in microgravity were analyzed to suggest information required for hazard analysis. Pathogen control strategies which can be set as critical control points were also designed from raw materials to consumption followed by the waste recycling.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, Sejong, South Korea; Department of Food Regulatory Science, College of Science and Technology, Korea University, Sejong, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
10
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
11
|
Overbey EG, Ryon K, Kim J, Tierney BT, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Garcia Medina JS, Kleinman AS, Wain Hirschberg J, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA). Nat Commun 2024; 15:4964. [PMID: 38862509 PMCID: PMC11166662 DOI: 10.1038/s41467-024-48806-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, 78701, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - J Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - S Anand Narayanan
- Florida State University, College of Education, Health, and Human Sciences, Department of Health, Nutrition, and Food Sciences, Tallahassee, FL, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra, Inc, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
12
|
Sengupta P, Muthamilselvi Sivabalan SK, Singh NK, Raman K, Venkateswaran K. Genomic, functional, and metabolic enhancements in multidrug-resistant Enterobacter bugandensis facilitating its persistence and succession in the International Space Station. MICROBIOME 2024; 12:62. [PMID: 38521963 PMCID: PMC10960378 DOI: 10.1186/s40168-024-01777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO2 levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections. RESULTS Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS. CONCLUSIONS Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | | - Nitin Kumar Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
- Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, 91109, CA, USA.
| |
Collapse
|
13
|
Spry JA, Siegel B, Bakermans C, Beaty DW, Bell MS, Benardini JN, Bonaccorsi R, Castro-Wallace SL, Coil DA, Coustenis A, Doran PT, Fenton L, Fidler DP, Glass B, Hoffman SJ, Karouia F, Levine JS, Lupisella ML, Martin-Torres J, Mogul R, Olsson-Francis K, Ortega-Ugalde S, Patel MR, Pearce DA, Race MS, Regberg AB, Rettberg P, Rummel JD, Sato KY, Schuerger AC, Sefton-Nash E, Sharkey M, Singh NK, Sinibaldi S, Stabekis P, Stoker CR, Venkateswaran KJ, Zimmerman RR, Zorzano-Mier MP. Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. ASTROBIOLOGY 2024; 24:230-274. [PMID: 38507695 DOI: 10.1089/ast.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Collapse
Affiliation(s)
| | | | - Corien Bakermans
- Department of Biology, Penn. State University (Altoona), Altoona, Pennsylvania, USA
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - David A Coil
- School of Medicine, University of California, Davis, Davis, California, USA
| | | | - Peter T Doran
- Department of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lori Fenton
- SETI Institute, Mountain View, California, USA
| | - David P Fidler
- Council on Foreign Relations, Washington, District of Columbia, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, California, USA
| | - Joel S Levine
- College of William & Mary, Williamsburg, Virginia, USA
| | | | - Javier Martin-Torres
- School of Geoscience, University of Aberdeen, Aberdeen, United Kingdom
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Spain
| | - Rakesh Mogul
- California Polytechnic (Pomona), Pomona, California, USA
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Manish R Patel
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - John D Rummel
- Friday Harbor Associates LLC, Friday Harbor, Washington, USA
| | | | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| | | | - Matthew Sharkey
- US Department of Health & Human Services, Washington, District of Columbia, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Carol R Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | |
Collapse
|
14
|
Zhang Y, Li Z, Peng Y, Guo Z, Wang H, Wei T, Shakir Y, Jiang G, Deng Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME COMMUNICATIONS 2024; 4:ycae013. [PMID: 38495633 PMCID: PMC10942772 DOI: 10.1093/ismeco/ycae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhidong Li
- Office of International Business and Technology Application, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Guohua Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenomics, phenotypic, and functional traits of five novel (Earth-derived) bacterial species isolated from the International Space Station and their prevalence in metagenomes. Sci Rep 2023; 13:19207. [PMID: 37932283 PMCID: PMC10628120 DOI: 10.1038/s41598-023-44172-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
16
|
Lema NK, Gemeda MT, Woldesemayat AA. Recent Advances in Metagenomic Approaches, Applications, and Challenge. Curr Microbiol 2023; 80:347. [PMID: 37733134 DOI: 10.1007/s00284-023-03451-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Advances in metagenomics analysis with the advent of next-generation sequencing have extended our knowledge of microbial communities as compared to conventional techniques providing advanced approach to identify novel and uncultivable microorganisms based on their genetic information derived from a particular environment. Shotgun metagenomics involves investigating the DNA of the entire community without the requirement of PCR amplification. It provides access to study all genes present in the sample. On the other hand, amplicon sequencing targets taxonomically important marker genes, the analysis of which is restricted to previously known DNA sequences. While sequence-based metagenomics is used to analyze DNA sequences directly from the environment without the requirement of library construction and with limited identification of novel genes and products that can be complemented by functional genomics, function-based metagenomics requires fragmentation and cloning of extracted metagenome DNA in a suitable host with subsequent functional screening and sequencing clone for detection of a novel gene. Although advances were made in metagenomics, different challenges arise. This review provides insight into advances in the metagenomic approaches combined with next-generation sequencing, their recent applications highlighting the emerging ones, such as in astrobiology, forensic sciences, and SARS-CoV-2 infection diagnosis, and the challenges associated. This review further discusses the different types of metagenomics and outlines advancements in bioinformatics tools and their significance in the analysis of metagenomic datasets.
Collapse
Affiliation(s)
- Niguse K Lema
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Mesfin T Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna A Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
17
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
18
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenetic affiliations and genomic characterization of novel bacterial species and their abundance in the International Space Station. RESEARCH SQUARE 2023:rs.3.rs-3126314. [PMID: 37461605 PMCID: PMC10350232 DOI: 10.21203/rs.3.rs-3126314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D. Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
19
|
Simpson AC, Eedara VVR, Singh NK, Damle N, Parker CW, Karouia F, Mason CE, Venkateswaran K. Comparative genomic analysis of Cohnella hashimotonis sp. nov. isolated from the International Space Station. Front Microbiol 2023; 14:1166013. [PMID: 37396358 PMCID: PMC10308117 DOI: 10.3389/fmicb.2023.1166013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
A single strain from the family Paenibacillaceae was isolated from the wall behind the Waste Hygiene Compartment aboard the International Space Station (ISS) in April 2018, as part of the Microbial Tracking mission series. This strain was identified as a gram-positive, rod-shaped, oxidase-positive, catalase-negative motile bacterium in the genus Cohnella, designated as F6_2S_P_1T. The 16S sequence of the F6_2S_P_1T strain places it in a clade with C. rhizosphaerae and C. ginsengisoli, which were originally isolated from plant tissue or rhizosphere environments. The closest 16S and gyrB matches to strain F6_2S_P_1T are to C. rhizosphaerae with 98.84 and 93.99% sequence similarity, while a core single-copy gene phylogeny from all publicly available Cohnella genomes places it as more closely related to C. ginsengisoli. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values to any described Cohnella species are <89 and <22%, respectively. The major fatty acids for strain F6_2S_P_1T are anteiso-C15:0 (51.7%), iso-C16:0 (23.1%), and iso-C15:0 (10.5%), and it is able to metabolize a wide range of carbon compounds. Given the results of the ANI and dDDH analyses, this ISS strain is a novel species within the genus Cohnella for which we propose the name Cohnella hashimotonis, with the type strain F6_2S_P_1T (=NRRL B-65657T and DSMZ 115098T). Because no closely related Cohnella genomes were available, this study generated the whole-genome sequences (WGSs) of the type strains for C. rhizosphaerae and C. ginsengisoli. Phylogenetic and pangenomic analysis reveals that F6_2S_P_1T, C. rhizosphaerae, and C. ginsengisoli, along with two uncharacterized Cohnella strains, possess a shared set of 332 gene clusters which are not shared with any other WGS of Cohnella species, and form a distinct clade branching off from C. nanjingensis. Functional traits were predicted for the genomes of strain F6_2S_P_1T and other members of this clade.
Collapse
Affiliation(s)
- Anna C. Simpson
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - V. V. Ramprasad Eedara
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nitin K. Singh
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Namita Damle
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Ceth W. Parker
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| | | | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, United States
| |
Collapse
|
20
|
Overbey EG, Ryon K, Kim J, Tierney B, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Medina JSG, Kleinman A, Hirschberg JW, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards for the Space Omics and Medical Atlas (SOMA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539108. [PMID: 37205403 PMCID: PMC10187258 DOI: 10.1101/2023.05.02.539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Caleb M. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E. Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
21
|
Chan K, Arumugam A, Markham C, Jenson R, Wu HW, Wong S. The Development of a 3D Printer-Inspired, Microgravity-Compatible Sample Preparation Device for Future Use Inside the International Space Station. MICROMACHINES 2023; 14:mi14050937. [PMID: 37241562 DOI: 10.3390/mi14050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a microgravity-compatible, automated versatile sample preparation platform (VSPP). The VSPP was built by modifying entry-level 3D printers that cost USD 200-USD 800. In addition, 3D printing was also used to prototype microgravity-compatible reagent wells and cartridges. The VSPP's primary function would enable NASA to rapidly identify microorganisms that could affect crew safety. It has the potential to process samples from various sample matrices (swab, potable water, blood, urine, etc.), thus yielding high-quality nucleic acids for downstream molecular detection and identification in a closed-cartridge system. When fully developed and validated in microgravity environments, this highly automated system will allow labor-intensive and time-consuming processes to be carried out via a turnkey, closed system using prefilled cartridges and magnetic particle-based chemistries. This manuscript demonstrates that the VSPP can extract high-quality nucleic acids from urine (Zika viral RNA) and whole blood (human RNase P gene) in a ground-level laboratory setting using nucleic acid-binding magnetic particles. The viral RNA detection data showed that the VSPP can process contrived urine samples at clinically relevant levels (as low as 50 PFU/extraction). The extraction of human DNA from eight replicate samples showed that the DNA extraction yield is highly consistent (there was a standard deviation of 0.4 threshold cycle when the extracted and purified DNA was tested via real-time polymerase chain reaction). Additionally, the VSPP underwent 2.1 s drop tower microgravity tests to determine if its components are compatible for use in microgravity. Our findings will aid future research in adapting extraction well geometry for 1 g and low g working environments operated by the VSPP. Future microgravity testing of the VSPP in the parabolic flights and in the ISS is planned.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Cole Markham
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Hao-Wei Wu
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| |
Collapse
|
22
|
Krüger M. Remove, Refine, Reduce: Cell Death in Biological Systems. Int J Mol Sci 2023; 24:ijms24087028. [PMID: 37108191 PMCID: PMC10138335 DOI: 10.3390/ijms24087028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cell death is an important biological phenomenon [...].
Collapse
Affiliation(s)
- Marcus Krüger
- Environmental Cell Biology Group, Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
23
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
24
|
Sengupta P, Sivabalan SKM, Mahesh A, Palanikumar I, Kuppa Baskaran DK, Raman K. Big Data for a Small World: A Review on Databases and Resources for Studying Microbiomes. J Indian Inst Sci 2023; 103:1-17. [PMID: 37362854 PMCID: PMC10073628 DOI: 10.1007/s41745-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 06/28/2023]
Abstract
Microorganisms are ubiquitous in nature and form complex community networks to survive in various environments. This community structure depends on numerous factors like nutrient availability, abiotic factors like temperature and pH as well as microbial composition. Categorising accessible biomes according to their habitats would help in understanding the complexity of the environment-specific communities. Owing to the recent improvements in sequencing facilities, researchers have started to explore diverse microbiomes rapidly and attempts have been made to study microbial crosstalk. However, different metagenomics sampling, preprocessing, and annotation methods make it difficult to compare multiple studies and hinder the recycling of data. Huge datasets originating from these experiments demand systematic computational methods to extract biological information beyond microbial compositions. Further exploration of microbial co-occurring patterns across the biomes could help us in designing cross-biome experiments. In this review, we catalogue databases with system-specific microbiomes, discussing publicly available common databases as well as specialised databases for a range of microbiomes. If the new datasets generated in the future could maintain at least biome-specific annotation, then researchers could use those contemporary tools for relevant and bias-free analysis of complex metagenomics data.
Collapse
Affiliation(s)
- Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | | | - Amrita Mahesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Indumathi Palanikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
25
|
Liu F, Lu H, Dong B, Huang X, Cheng H, Qu R, Hu Y, Zhong L, Guo Z, You Y, Xu ZZ. Systematic Evaluation of the Viable Microbiome in the Human Oral and Gut Samples with Spike-in Gram+/– Bacteria. mSystems 2023; 8:e0073822. [PMID: 36971593 PMCID: PMC10134872 DOI: 10.1128/msystems.00738-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The functions and phenotypes of microbial communities are largely defined by viable microbes. Through advanced nucleic acid sequencing technologies and downstream bioinformatic analyses, we gained an insight into the high-resolution microbial community composition of human saliva and feces, yet we know very little about whether such community DNA sequences represent viable microbes.
Collapse
|