1
|
Cai M, Lin N, Chen X, Huang H, Guo N, Lin J, Xu L. Ultrasound Phenotype, Genetic Analysis, and Pregnancy Outcomes of Fetuses With 1p36 Deletion Syndrome. Mol Genet Genomic Med 2025; 13:e70104. [PMID: 40285432 PMCID: PMC12032399 DOI: 10.1002/mgg3.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The intrauterine ultrasound phenotype, genotype, pregnancy outcome, and neonatal prognosis of fetuses with 1p36 deletion syndrome were retrospectively analyzed, as previous reports are limited. METHODS Pregnant women (25,000) who underwent interventional prenatal diagnosis between December 2016 and March 2024 were selected. Fetal villus tissue, amniotic fluid, or umbilical cord blood were extracted for single nucleotide polymorphism array (SNP-array) detection under ultrasound guidance. RESULTS Thirteen fetuses had 1p36 deletions involving fragments that were 0.46-22.5 Mb. Six and seven fetuses had large and small copy number variation (CNV) fragment deletions in the 1p36 region, respectively. Two fetuses had normal ultrasound phenotypes, three underwent early spontaneous abortion, one had isolated ventricular septal defect, one had isolated mild ventriculomegaly, two had mild ventriculomegaly associated with increased renal echogenicity, one had mild ventriculomegaly associated with ventricular septal defect, one had severe ventriculomegaly associated with ventricular septal defect and fetal growth restriction, one had tricuspid valve dysplasia, and one had nasal bone dysplasia. Three 1p36 deletions were de novo, and one was paternally inherited. There were three cases of early spontaneous abortion, seven terminations, and three routine postnatal follow-ups. CONCLUSIONS High-resolution SNP-arrays are suitable for the prenatal diagnosis of 1p36 deletion syndrome.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| | - Jiansong Lin
- Department of PathologyFujian Maternal and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical UniversityFuzhouChina
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhouChina
| |
Collapse
|
2
|
Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, Yang L, Huang X, Hu B, Liu J, Ouyang Y, He M. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med 2021; 26:88-98. [PMID: 34854218 PMCID: PMC8742182 DOI: 10.1111/jcmm.17034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Vasorin (VASN) is an important transmembrane protein associated with development and disease. However, it is not clear whether the death of mice with VASN deficiency (VASN-/- ) is related to cardiac dysfunction. The aim of this research was to ascertain whether VASN induces pathological cardiac hypertrophy by targeting myosin light chain 7 (MYL7). VASN-/- mice were produced by CRISPR/Cas9 technology and inbreeding. PCR amplification, electrophoresis, real-time PCR and Western blotting were used to confirm VASN deficiency. Cardiac hypertrophy was examined by blood tests, histological analysis and real-time PCR, and key downstream factors were identified by RNA sequencing and real-time PCR. Western blotting, immunohistochemistry and electron microscopy analysis were used to confirm the downregulation of MYL7 production and cardiac structural changes. Our results showed that sudden death of VASN-/- mice occurred 21-28 days after birth. The obvious increases in cardiovascular risk, heart weight and myocardial volume and the upregulation of hypertrophy marker gene expression indicated that cardiac hypertrophy may be the cause of death in young VASN-/- mice. Transcriptome analysis revealed that VASN deficiency led to MYL7 downregulation, which induced myocardial structure abnormalities and disorders. Our results revealed a pathological phenomenon in which VASN deficiency may lead to cardiac hypertrophy by downregulating MYL7 production. However, more research is necessary to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Yu
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, China
| |
Collapse
|
3
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Edwards JJ, Rouillard AD, Fernandez NF, Wang Z, Lachmann A, Shankaran SS, Bisgrove BW, Demarest B, Turan N, Srivastava D, Bernstein D, Deanfield J, Giardini A, Porter G, Kim R, Roberts AE, Newburger JW, Goldmuntz E, Brueckner M, Lifton RP, Seidman CE, Chung WK, Tristani-Firouzi M, Yost HJ, Ma’ayan A, Gelb BD. Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects. JACC Basic Transl Sci 2020; 5:376-386. [PMID: 32368696 PMCID: PMC7188873 DOI: 10.1016/j.jacbts.2020.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development.
Collapse
Key Words
- CHD, congenital heart disease
- CORUM, Comprehensive Resource of Mammalian Protein Complexes
- CRISPR, clustered regularly interspaced short palindromic repeats
- CTD, conotruncal defect
- GOBP, Gene Ontology biological processes
- HHE, high heart expression
- HLHS, hypoplastic left heart syndrome
- HTX, heterotaxy
- LVOTO, left ventricular outflow tract obstruction
- MGI, Mouse Genome Informatics
- PCGC, Pediatric Cardiac Genomics Consortium
- PPI, protein-protein interaction
- congenital heart disease
- systems biology
- translational genomics
Collapse
Affiliation(s)
- Jonathan J. Edwards
- Department of Pediatrics, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew D. Rouillard
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas F. Fernandez
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sunita S. Shankaran
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Brent W. Bisgrove
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Bradley Demarest
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, California
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - John Deanfield
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Alessandro Giardini
- Department of Cardiology, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - George Porter
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Kim
- Section of Cardiothoracic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Amy E. Roberts
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Jane W. Newburger
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts
| | - Elizabeth Goldmuntz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, LINCS-BD2K DCIC, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Jiang P, Hu Y, Wang Y, Zhang J, Zhu Q, Bai L, Tong Q, Li T, Zhao L. Efficient Mining of Variants From Trios for Ventricular Septal Defect Association Study. Front Genet 2019; 10:670. [PMID: 31440271 PMCID: PMC6694746 DOI: 10.3389/fgene.2019.00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
Ventricular septal defect (VSD) is a fatal congenital heart disease showing severe consequence in affected infants. Early diagnosis plays an important role, particularly through genetic variants. Existing panel-based approaches of variants mining suffer from shortage of large panels, costly sequencing, and missing rare variants. Although a trio-based method alleviates these limitations to some extent, it is agnostic to novel mutations and computational intensive. Considering these limitations, we are studying a novel variants mining algorithm from trio-based sequencing data and apply it on a VSD trio to identify associated mutations. Our approach starts with irrelevant k-mer filtering from sequences of a trio via a newly conceived coupled Bloom Filter, then corrects sequencing errors by using a statistical approach and extends kept k-mers into long sequences. These extended sequences are used as input for variants needed. Later, the obtained variants are comprehensively analyzed against existing databases to mine VSD-related mutations. Experiments show that our trio-based algorithm narrows down candidate coding genes and lncRNAs by about 10- and 5-folds comparing with single sequence-based approaches, respectively. Meanwhile, our algorithm is 10 times faster and 2 magnitudes memory-frugal compared with existing state-of-the-art approach. By applying our approach to a VSD trio, we fish out an unreported gene—CD80, a combination of two genes—MYBPC3 and TRDN and a lncRNA—NONHSAT096266.2, which are highly likely to be VSD-related.
Collapse
Affiliation(s)
- Peng Jiang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yaofei Hu
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiqi Wang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jin Zhang
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qinghong Zhu
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lin Bai
- School of Computing and Electronic Information, Guangxi University, Nanning, China
| | - Qiang Tong
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Li
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,School of Computing and Electronic Information, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Bai X, Zhou Y, Ouyang N, Liu L, Huang X, Tian J, Lv T. A de novo Mutation in the MTUS1 Gene Decreases the Risk of Non-compaction of Ventricular Myocardium via the Rac1/Cdc42 Pathway. Front Pediatr 2019; 7:247. [PMID: 31338350 PMCID: PMC6626910 DOI: 10.3389/fped.2019.00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background: The MTUS1 gene encodes a microtubule-associated protein involved in multiple processes including cell polarity and microtubule balance during myocardial development. Aims: To investigate the association between a de novo c. 2617A->C mutation in MTUS1 (NM_001001924.2) and non-compaction of ventricular myocardium (NVM) and explore the potential mechanisms. Methods: A de novo mutation in MTUS1 was identified for a familial pedigree with NVM. Lentiviral vectors containing MTUS1 wild type or the mutation MTUS1 were constructed and co-infected into HEK-293 cells. MTUS1, Rac1/Cdc42, α-tubulin, α/β-tubulin, polarity protein (PAR6), and the morphology of daughter cells were measured by real-time PCR, Western blot, and immunofluorescence assays, respectively. Results: The lentiviral vectors were constructed successfully. Immunofluorescence assays revealed the fluorescence intensity of α-tubulin to be decreased and α/β-tubulin to be increased in the mutation MTUS1 group. The fluorescence intensity of PAR6 was higher and morphology of the daughter cells in the mutation group was different from the wild type group. The phosphorylation of Rac1/Cdc42 in the mutation group was significantly lower than in the wild type group. Conclusions: A de novo mutation in MTUS1 decreased the stability of microtubules and increased cell polarity via the Rac1/Cdc42 pathway, which may partly elucidate the mechanism underlying cellular protection in NVM.
Collapse
Affiliation(s)
- Xuehan Bai
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yuanlin Zhou
- Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Na Ouyang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|