1
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H, Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int 2024; 24:246. [PMID: 39010066 PMCID: PMC11251390 DOI: 10.1186/s12935-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Li Z, Lu W, Yin F, Zeng P, Li H, Huang A. Overexpression of TNFSF11 reduces GPX4 levels and increases sensitivity to ferroptosis inducers in lung adenocarcinoma. J Transl Med 2024; 22:340. [PMID: 38594779 PMCID: PMC11005202 DOI: 10.1186/s12967-024-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Peiting Zeng
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Hirata W, Itatani Y, Masui H, Kawada K, Mizuno R, Yamamoto T, Okamoto T, Ogawa R, Inamoto S, Maekawa H, Okamura R, Kiyasu Y, Hanada K, Okamoto M, Nishikawa Y, Sugimoto N, Tamura T, Hatano E, Sakai Y, Obama K. Downregulation of osteoprotegerin in colorectal cancer cells promotes liver metastasis via activating tumor-associated macrophage. Sci Rep 2023; 13:22217. [PMID: 38097649 PMCID: PMC10721637 DOI: 10.1038/s41598-023-49312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Osteoprotegerin (OPG) is a secreted cytokine that functions as a decoy receptor for receptor activator of nuclear factor kappa-B (RANK) ligand (RANKL). Anti-RANKL treatment for bone metastasis has been widely accepted for solid tumors. However, the mechanism of OPG-RANKL-RANK signaling in systemic colorectal cancer (CRC) metastasis remains unclear. In this study, we investigated the relevance and function of OPG expression in CRC liver metastasis. First, we performed in silico analysis using The Cancer Genome Atlas public database and found that lower OPG expression in CRC was associated with poor overall survival. Immunohistochemistry analyses using resected specimen from patients with CRC in our institute confirmed the result. Patient-matched primary CRC and liver metastases showed a significant downregulation of OPG expression in metastatic lesions. In CRC cell lines, OPG expression did not suppress cell proliferation and migration. However, OPG expression inhibited macrophage migration by suppressing the RANKL-RANK pathway. Moreover, in vivo mouse liver metastasis models showed that OPG expression in CRC cells suppressed liver metastases. In addition, treatment with an anti-RANKL neutralizing antibody also suppressed liver metastases. These results showed that downregulation of OPG expression in CRC cells promotes liver metastasis by activating tumor-associated macrophage, which can become a candidate for targeted therapy with anti-RANKL neutralizing antibody for CRC liver metastasis.
Collapse
Affiliation(s)
- Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, Kurashiki Central Hospital, Okayama, 710-8602, Japan
| | - Rei Mizuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, NHO Kyoto Medical Center, Kyoto, 611-0041, Japan
| | - Takamasa Yamamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryotaro Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Inamoto
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, 543-8555, Japan
| | - Hisatsugu Maekawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Okamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Naoko Sugimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Tamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, 543-8555, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
4
|
The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Dis 2022; 8:252. [PMID: 35523775 PMCID: PMC9076607 DOI: 10.1038/s41420-022-01042-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Osteoprotegerin (OPG), also known as tumor necrosis factor receptor superfamily member 11B (TNFRSF11B), is a member of the tumor necrosis factor (TNF) receptor superfamily. Characterized by its ability to bind to receptor activator of nuclear factor kappa B ligand (RANKL), OPG is critically involved in bone remodeling. Emerging evidence implies that OPG is far beyond a bone-specific modulator, and is involved in multiple physiological and pathological processes, such as immunoregulation, vascular function, and fibrosis. Notably, numerous preclinical and clinical studies have been conducted to assess the participation of OPG in tumorigenesis and cancer development. Mechanistic studies have demonstrated that OPG is involved in multiple hallmarks of cancer, including tumor survival, epithelial to mesenchymal transition (EMT), neo-angiogenesis, invasion, and metastasis. In this review, we systematically summarize the basis and advances of OPG from its molecular structure to translational applications. In addition to its role in bone homeostasis, the physiological and pathological impacts of OPG on human health and its function in cancer progression are reviewed, providing a comprehensive understanding of OPG. We aim to draw more attention to OPG in the field of cancer, and to propose it as a promising diagnostic or prognostic biomarker as well as potential therapeutic target for cancer.
Collapse
|
5
|
Zhang C, Lin J, Ni X, Li H, Zheng L, Zhao Z, Qi X, Huo H, Lou X, Fan Q, Luo M. Prognostic Value of Serum Osteoprotegerin Level in Patients With Hepatocellular Carcinoma Following Surgical Resection. Front Oncol 2021; 11:731989. [PMID: 34650917 PMCID: PMC8505987 DOI: 10.3389/fonc.2021.731989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background Multiple studies have reported that tissue or serum osteoprotegerin (OPG) level is a prognostic factor for patients with cancer. However, little is known about the role of serum OPG in hepatocellular carcinoma (HCC). In this study, we aimed to investigate whether serum OPG concentration has an effect on HCC patients’ prognosis. Methods A total of 386 eligible HCC patients undergoing radical hepatectomy were enrolled from Shanghai Ninth People’s Hospital and Zhongshan Hospital between 2010 and 2018. Kaplan-Meier curves, Cox regression model, and the restricted mean survival time (RMST) were used to estimate the association of OPG and HCC patients’ survival outcome. In addition, sensitivity analyses were carried out including subgroup analysis and propensity score matching (PSM). Results Patients were separated into two groups according to the cut-off value of OPG calculated by X-tile. Multivariate Cox analysis showed that patients with high OPG level had worse overall survival (OS) (HR: 1.93; 95% CI: 1.40–2.66, p<0.001) and disease-free survival (DFS) (HR: 1.85; 95% CI: 1.39–2.47, p<0.001) before matching. On average, RMST ratio between high and low OPG turned out to be 0.797 (95% CI: 0.716–0.887, p<0.001). In the matched population, we found that OPG level was negatively associated with OS (HR: 1.85; 95% CI: 1.25–2.74, p=0.002) and DFS (HR: 1.71; 95% CI: 1.20–2.44, p=0.003). In addition, a similar trend was further confirmed by subgroup analyses. Conclusion In a word, HCC patients with high OPG level had poorer survival rates compared with HCC patients with low OPG level. This factor could act as a potential prognostic predictor for HCC patients who underwent radical resection in the future.
Collapse
Affiliation(s)
- Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Ni
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, Liu JS. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res 2021; 55:720-730. [PMID: 34160338 DOI: 10.1080/10715762.2021.1923705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer is a common lethal malignancy and causes great cancer-related mortality worldwide. MicroRNA (miR)-328-3p is implicated in the progression of various human cancers; however, its role and mechanism in the progression of gastric cancer remain unclear.Human gastric cancer cells were incubated with miR-328-3p mimic, inhibitor or the matched negative control. Cell viability, colony formation, migrative and invasive capacity, cell apoptosis and oxidative stress were measured. To clarify the involvement of nuclear factor-E2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1), small interfering RNA was used. miR-328-3p was upregulated in human gastric cancer cells and tissues, and its level positively correlated with the progression of gastric cancer. miR-328-3p promoted cell viability, colony formation, migration and invasion, thereby facilitating the progression of gastric cancer. miR-328-3p mimic reduced, while miR-328-3p inhibitor increased apoptosis and oxidative stress of human gastric cancer cells. Mechanistically, miR-328-3p upregulated NRF2 via targeting KEAP1to attenuate excessive free radical production and cell apoptosis. miR-328-3p functions as an oncogenic gene and inhibiting miR-328-3p may help to develop novel therapeutic strategies of human gastric cancer.
Collapse
Affiliation(s)
- Zhe Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Xin Dao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Fei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Hong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Cheng Yan
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Sheng Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. J Clin Med 2021; 10:jcm10081777. [PMID: 33921760 PMCID: PMC8073984 DOI: 10.3390/jcm10081777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the third cause of cancer-related death worldwide; the prognosis is poor especially in the case of metastatic disease. Liver, lymph nodes, peritoneum, and lung are the most frequent sites of metastases from GC; however, bone metastases from GC have been reported in the literature. Nevertheless, it is unclear how the metastatic sites may affect the prognosis. In particular, knowledge about the impact of bone metastases on GC patients’ outcome is scant, and this may be related to the rarity of bone lesions and/or their underestimation at the time of diagnosis. In fact, there is still a lack of specific recommendation for their detection at the diagnosis. Then, the majority of the evidences in this field came from retrospective analysis on very heterogeneous study populations. In this context, the aim of this narrative review is to delineate an overview about the evidences existing about bone metastases in GC patients, focusing on their incidence and biology, the prognostic role of bone involvement, and their possible implication in the treatment choice.
Collapse
|
8
|
Association of Genetic Polymorphisms in TNFRSF11 with the Progression of Genetic Susceptibility to Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:4103264. [PMID: 32655638 PMCID: PMC7327555 DOI: 10.1155/2020/4103264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Objective To investigate the relationship between polymorphism of TNFRSF11 gene rs9533156 and rs2277438 and susceptibility to gastric cancer. Methods A case-control study was conducted to select 577 cases of primary gastric cancer and 678 cases of normal control. We extracted whole blood genomic DNA and amplified the target gene fragment by PCR. The genotyping and allele were tested through the snapshot method. Results In this case-control study, we observed that there was a difference in the genotype distribution of TNFRSF11 gene rs9533156 between the case group and the control group. The frequency distribution of TC heterozygous mutation in the case group was higher than that in the control group. The smoking rate in the case group (34.49%) was higher than that in the control group (27.29%), and the difference in frequency distribution between the two groups was statistically significant (P=0.006). Our findings suggest that TNFRSF11 rs9533156 is associated with susceptibility to GC, which is more evident among elderly patients (>62 years), nonsmokers, and patients who do not consume alcohol. The analysis of the relationship between the TNFSF11 gene rs9533156 site variant and clinical factors of gastric cancer showed that, compared with the tumor size <2 cm group, patients with tumor size ≥2 cm and whom carrying rs9533156 site mutations had a higher frequency distribution, and the difference was statistically significant (P=0.022). Compared with the nonhyperglycemic group, the frequency distribution of patients with rs9533156 site mutations in the diabetes group was higher, and the difference was statistically significant (P < 0.001). Conclusion This study shows that there is a correlation between smoking and the occurrence of gastric cancer. Based on our research, the functional SNP TNFRSF11 TC genotype may be an indicator of individual susceptibility to GC. The mutation at rs9533156 may be related to the size of gastric cancer. The mutation rate of rs9533156 of TNFSF11 gene is higher in diabetic gastric cancer patients.
Collapse
|