1
|
Li K, Xie F, Xiong Y, Jiang J, Huang B. Progress in the application of molecular imaging technology in immunological tolerance and immune metabolism visualization research. Front Immunol 2025; 16:1583228. [PMID: 40236707 PMCID: PMC11996769 DOI: 10.3389/fimmu.2025.1583228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Immunological tolerance and immune metabolism play crucial roles in maintaining immune homeostasis and the immune response to diseases. The advancement of molecular imaging technologies, particularly optical molecular imaging, nuclear medicine imaging, and magnetic resonance imaging, has led to a significant progress in the visualization of immune tolerance and immune metabolism. Molecular imaging technologies enable real-time monitoring and analysis of dynamic changes in immune tolerance mechanisms and immune metabolism in living organisms, allowing the development of new strategies for early disease diagnosis, targeted therapy, and immunotherapy. This article reviews the latest advancements in the application of molecular imaging technologies in the fields of immunological tolerance and immune metabolism, with a focus on their applications in the regulation of immune tolerance regulation, immune metabolism, and immunotherapy.
Collapse
Affiliation(s)
- Kailang Li
- Department of Radiology, The Third People’s Hospital In Xindu District of Chengdu, Chengdu, China
| | - Fang Xie
- Department of Oncology, The Second People’s Hospital of Yibin, Yibin, China
| | - Yongfu Xiong
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jin Jiang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bifan Huang
- Department of Radiology, The Third People’s Hospital In Xindu District of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Kamp M, Surmacki J, Segarra Mondejar M, Young T, Chrabaszcz K, Joud F, Zecchini V, Speed A, Frezza C, Bohndiek SE. Raman micro-spectroscopy reveals the spatial distribution of fumarate in cells and tissues. Nat Commun 2024; 15:5386. [PMID: 38918386 PMCID: PMC11199670 DOI: 10.1038/s41467-024-49403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.
Collapse
Affiliation(s)
- Marlous Kamp
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Marc Segarra Mondejar
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Tim Young
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Karolina Chrabaszcz
- Institute of Nuclear Physics, Polish Academy of Sciences, Department of Experimental Physics of Complex Systems, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Vincent Zecchini
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Alyson Speed
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- Hutchison/MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
3
|
Wiström E, Hyacinthe JN, Lê TP, Gruetter R, Capozzi A. 129Xe Dynamic Nuclear Polarization Demystified: The Influence of the Glassing Matrix on the Radical Properties. J Phys Chem Lett 2024; 15:2957-2965. [PMID: 38453156 PMCID: PMC10961830 DOI: 10.1021/acs.jpclett.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
129Xe dissolution dynamic nuclear polarization (DNP) is a controversial topic. The gold standard technique for hyperpolarized xenon magnetic resonance imaging (MRI) is spin exchange optical pumping, which received FDA approval in 2022. Nevertheless, the versatility of DNP for enhancing the signal of any NMR active nucleus might provide new perspectives for hyperpolarized 129Xe NMR/MRI. Initial publications about 129Xe DNP underlined the increased complexity in the sample preparation and lower polarization levels when compared to more conventional 13C-labeled molecules, at same experimental conditions, despite very close gyromagnetic ratios. Herein, we introduce, using a Custom Fluid Path system, a user-friendly and very robust sample preparation method. Moreover, investigating the radical properties at real DNP conditions by means of LOngitudinal Detected Electron Spin Resonance, we discovered a dramatic shortening of the electron spin longitudinal relaxation time (T1e) of nitroxyl radicals in xenon DNP samples' matrices, with respect to more commonly used water:glycerol ones. Mitigating those challenges through microwave frequency modulation, we achieved over 20% 129Xe polarization without employing any deuterated solvent.
Collapse
Affiliation(s)
- Emma Wiström
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Thanh Phong Lê
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Andrea Capozzi
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG,
Department of Health Technology, Technical
University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Lê TP, Hyacinthe JN, Capozzi A. Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization. Sci Rep 2023; 13:7962. [PMID: 37198242 DOI: 10.1038/s41598-023-34958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized (HP) sample. Being able to hyperpolarize more samples at once represents a clear advantage and can expand the range and complexity of the applications. In this work, we present the design and performance of a highly versatile and customizable dDNP cryogenic probe, herein adapted to a 5 T "wet" preclinical polarizer, that can accommodate up to three samples at once and, most importantly, it is capable of monitoring the solid-state spin dynamics of each sample separately, regardless of the kind of radical used and the nuclear species of interest. Within 30 min, the system was able to dispense three HP solutions with high repeatability across the channels (30.0 ± 1.2% carbon polarization for [1-13C]pyruvic acid doped with trityl radical). Moreover, we tested multi-nucleus NMR capability by polarizing and monitoring simultaneously 13C, 1H and 129Xe. Finally, we implemented [1-13C]lactate/[1-13C]pyruvate polarization and back-to-back dissolution and injection in a healthy mouse model to perform multiple-substrate HP Magnetic Resonance Spectroscopy (MRS) at 14.1 T.
Collapse
Affiliation(s)
- Thanh Phong Lê
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
- Image Guided Intervention Laboratory, Department of Radiology and Medical Informatics, University of Geneva, 4 Rue Gabrielle - Perret - Gentil, 1211, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, 1206, Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
5
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Stewart NJ, Sato T, Takeda N, Hirata H, Matsumoto S. Hyperpolarized 13C Magnetic Resonance Imaging as a Tool for Imaging Tissue Redox State, Oxidative Stress, Inflammation, and Cellular Metabolism. Antioxid Redox Signal 2022; 36:81-94. [PMID: 34218688 PMCID: PMC8792501 DOI: 10.1089/ars.2021.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Magnetic resonance imaging (MRI) with hyperpolarized (HP) 13C-labeled redox-sensitive metabolic tracers can provide noninvasive functional imaging biomarkers, reflecting tissue redox state, oxidative stress, and inflammation, among others. The capability to use endogenous metabolites as 13C-enriched imaging tracers without structural modification makes HP 13C MRI a promising tool to evaluate redox state in patients with various diseases. Recent Advances: Recent studies have demonstrated the feasibility of in vivo metabolic imaging of 13C-labeled tracers polarized by parahydrogen-induced polarization techniques, which offer a cost-effective alternative to the more widely used dissolution dynamic nuclear polarization-based hyperpolarizers. Critical Issues: Although the fluxes of many metabolic pathways reflect the change in tissue redox state, they are not functionally specific. In the present review, we summarize recent challenges in the development of specific 13C metabolic tracers for biomarkers of redox state, including that for detecting reactive oxygen species. Future Directions: Applications of HP 13C metabolic MRI to evaluate redox state have only just begun to be investigated. The possibility to gain a comprehensive understanding of the correlations between tissue redox potential and metabolism under different pathological conditions by using HP 13C MRI is promoting its interest in the clinical arena, along with its noninvasive biomarkers to evaluate the extent of disease and treatment response.
Collapse
Affiliation(s)
- Neil J Stewart
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan.,POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan
| | - Hiroshi Hirata
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| | - Shingo Matsumoto
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Han J, Li Q, Chen Y, Yang Y. Recent Metabolomics Analysis in Tumor Metabolism Reprogramming. Front Mol Biosci 2021; 8:763902. [PMID: 34901157 PMCID: PMC8660977 DOI: 10.3389/fmolb.2021.763902] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming has been suggested as a hallmark of cancer progression. Metabolomic analysis of various metabolic profiles represents a powerful and technically feasible method to monitor dynamic changes in tumor metabolism and response to treatment over the course of the disease. To date, numerous original studies have highlighted the application of metabolomics to various aspects of tumor metabolic reprogramming research. In this review, we summarize how metabolomics techniques can help understand the effects that changes in the metabolic profile of the tumor microenvironment on the three major metabolic pathways of tumors. Various non-invasive biofluids are available that produce accurate and useful clinical information on tumor metabolism to identify early biomarkers of tumor development. Similarly, metabolomics can predict individual metabolic differences in response to tumor drugs, assess drug efficacy, and monitor drug resistance. On this basis, we also discuss the application of stable isotope tracer technology as a method for the study of tumor metabolism, which enables the tracking of metabolite activity in the body and deep metabolic pathways. We summarize the multifaceted application of metabolomics in cancer metabolic reprogramming to reveal its important role in cancer development and treatment.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Division of Infectious Diseases, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, China
| |
Collapse
|
8
|
Measuring Glycolytic Activity with Hyperpolarized [ 2H 7, U- 13C 6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions. Metabolites 2021; 11:metabo11070413. [PMID: 34201777 PMCID: PMC8303162 DOI: 10.3390/metabo11070413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent functional magnetic resonance imaging (fMRI) and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and non-hyperpolaized 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to cerebral metabolic rate of glucose (CMRGlc). We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.
Collapse
|
9
|
Enriquez JS, Chu Y, Pudakalakatti S, Hsieh KL, Salmon D, Dutta P, Millward NZ, Lurie E, Millward S, McAllister F, Maitra A, Sen S, Killary A, Zhang J, Jiang X, Bhattacharya PK, Shams S. Hyperpolarized Magnetic Resonance and Artificial Intelligence: Frontiers of Imaging in Pancreatic Cancer. JMIR Med Inform 2021; 9:e26601. [PMID: 34137725 PMCID: PMC8277399 DOI: 10.2196/26601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is an unmet need for noninvasive imaging markers that can help identify the aggressive subtype(s) of pancreatic ductal adenocarcinoma (PDAC) at diagnosis and at an earlier time point, and evaluate the efficacy of therapy prior to tumor reduction. In the past few years, there have been two major developments with potential for a significant impact in establishing imaging biomarkers for PDAC and pancreatic cancer premalignancy: (1) hyperpolarized metabolic (HP)-magnetic resonance (MR), which increases the sensitivity of conventional MR by over 10,000-fold, enabling real-time metabolic measurements; and (2) applications of artificial intelligence (AI). OBJECTIVE Our objective of this review was to discuss these two exciting but independent developments (HP-MR and AI) in the realm of PDAC imaging and detection from the available literature to date. METHODS A systematic review following the PRISMA extension for Scoping Reviews (PRISMA-ScR) guidelines was performed. Studies addressing the utilization of HP-MR and/or AI for early detection, assessment of aggressiveness, and interrogating the early efficacy of therapy in patients with PDAC cited in recent clinical guidelines were extracted from the PubMed and Google Scholar databases. The studies were reviewed following predefined exclusion and inclusion criteria, and grouped based on the utilization of HP-MR and/or AI in PDAC diagnosis. RESULTS Part of the goal of this review was to highlight the knowledge gap of early detection in pancreatic cancer by any imaging modality, and to emphasize how AI and HP-MR can address this critical gap. We reviewed every paper published on HP-MR applications in PDAC, including six preclinical studies and one clinical trial. We also reviewed several HP-MR-related articles describing new probes with many functional applications in PDAC. On the AI side, we reviewed all existing papers that met our inclusion criteria on AI applications for evaluating computed tomography (CT) and MR images in PDAC. With the emergence of AI and its unique capability to learn across multimodal data, along with sensitive metabolic imaging using HP-MR, this knowledge gap in PDAC can be adequately addressed. CT is an accessible and widespread imaging modality worldwide as it is affordable; because of this reason alone, most of the data discussed are based on CT imaging datasets. Although there were relatively few MR-related papers included in this review, we believe that with rapid adoption of MR imaging and HP-MR, more clinical data on pancreatic cancer imaging will be available in the near future. CONCLUSIONS Integration of AI, HP-MR, and multimodal imaging information in pancreatic cancer may lead to the development of real-time biomarkers of early detection, assessing aggressiveness, and interrogating early efficacy of therapy in PDAC.
Collapse
Affiliation(s)
- José S Enriquez
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yan Chu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kang Lin Hsieh
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Duncan Salmon
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Niki Zacharias Millward
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eugene Lurie
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven Millward
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Florencia McAllister
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Subrata Sen
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann Killary
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jian Zhang
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayan Shams
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Mahar R, Zeng H, Giacalone A, Ragavan M, Mareci TH, Merritt ME. Deuterated water imaging of the rat brain following metabolism of [ 2 H 7 ]glucose. Magn Reson Med 2021; 85:3049-3059. [PMID: 33576535 PMCID: PMC7953892 DOI: 10.1002/mrm.28700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE To determine whether deuterated water (HDO) generated from the metabolism of [2 H7 ]glucose is a sensitive biomarker of cerebral glycolysis and oxidative flux. METHODS A bolus of [2 H7 ]glucose was injected through the tail vein at 1.95 g/kg into Sprague-Dawley rats. A 2 H surface coil was placed on top of the head to record 2 H spectra of the brain every 1.3 minutes to measure glucose uptake and metabolism to HDO, lactate, and glutamate/glutamine. A two-point Dixon method based on a gradient-echo sequence was used to reconstruct deuterated glucose and water (HDO) images selectively. RESULTS The background HDO signal could be detected and imaged before glucose injection. The 2 H NMR spectra showed arrival of [2 H7 ]glucose and its metabolism in a time-dependent manner. A ratio of the HDO to glutamate/glutamine resonances demonstrates a pseudo-steady state following injection, in which cerebral metabolism dominates wash-in of HDO generated by peripheral metabolism. Brain spectroscopy reveals that HDO generation is linear with lactate and glutamate/glutamine appearance in the appropriate pseudo-steady state window. Selective imaging of HDO and glucose is easily accomplished using a gradient-echo method. CONCLUSION Metabolic imaging of HDO, as a marker of glucose, lactate, and glutamate/glutamine metabolism, has been shown here for the first time. Cerebral glucose metabolism can be assessed efficiently using a standard gradient-echo sequence that provides superior in-plane resolution compared with CSI-based techniques.
Collapse
Affiliation(s)
- Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anthony Giacalone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mukundan Ragavan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Ahamed F, Van Criekinge M, Wang ZJ, Kurhanewicz J, Larson P, Sriram R. Modeling hyperpolarized lactate signal dynamics in cells, patient-derived tissue slice cultures and murine models. NMR IN BIOMEDICINE 2021; 34:e4467. [PMID: 33415771 PMCID: PMC8423093 DOI: 10.1002/nbm.4467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/10/2020] [Indexed: 05/31/2023]
Abstract
Determining the aggressiveness of renal cell carcinoma (RCC) noninvasively is a critical part of the diagnostic workup for treating this disease that kills more than 15,000 people annually in the USA. Recently, we have shown that not only the amount of lactate produced, as a consequence of the Warburg effect, but also its efflux out of the cell, is a critical marker of RCC aggressiveness and differentiating RCCs from benign renal tumors. Enzymatic conversions can now be measured in situ with hyperpolarized (HP) 13 C magnetic resonance (MR) on a sub-minute time scale. Using RCC models, we have shown that this technology can interrogate in real time both lactate production and compartmentalization, which are associated with tumor aggressiveness. The dynamic HP MR data have enabled us to robustly characterize parameters that have been elusive to measure directly in intact living cells and murine tumors thus far. Specifically, we were able to measure the same intracellular lactate longitudinal relaxation time in three RCC cell lines of 16.42 s, and lactate efflux rate ranging from 0.14 to 0.8 s-1 in the least to the most aggressive RCC cell lines and correlate it to monocarboxylate transporter isoform 4 expression. We also analyzed dynamic HP lactate and pyruvate data from orthotopic murine RCC tumors using a simplified one-compartment model, and showed comparable apparent pyruvate to lactate conversion rate (kPL ) values with those measured in vitro. This kinetic modeling was then extended to characterize the lactate dynamics in patient-derived living RCC tissue slices; and even without direct measurement of the extracellular lactate signal the efflux parameter was still assessed and was distinct between the benign renal tumors and RCCs. Across all these preclinical models, the rate parameters of kPL and lactate efflux correlated to cancer aggressiveness, demonstrating the validity of our modeling approach for noninvasive assessment of RCC aggressiveness.
Collapse
Affiliation(s)
- Fayyaz Ahamed
- University of California, Berkeley, Berkeley, California, USA
| | - Mark Van Criekinge
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J. Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder Larson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
13
|
Tumor Microenvironment Biosensors for Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopy. Mol Imaging Biol 2021; 23:323-334. [PMID: 33415679 DOI: 10.1007/s11307-020-01570-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Hyperpolarization (HP) of a carbon-13 molecule via dynamic nuclear polarization (DNP) involves polarization at low temperature, followed by a dissolution procedure producing a solution with highly polarized spins at room temperature. This dissolution DNP method significantly increases the signal-to-noise ratio (SNR) of nuclear magnetic resonance (NMR) over 10,000-fold and facilitates the use of magnetic resonance spectroscopy (MRS) to image not only metabolism but also the extracellular microenvironment. The extracellular tumor microenvironment (TME) closely interacts with tumor cells and stimulates their growth and metastasis. Thus, the ability to detect pathological changes in the TME is pivotal for the detection and study of cancers. This review highlights the potential use of MRS to study features of the TME-elevated export of lactate, reduced interstitial pH, imbalanced redox equilibrium, and altered metal homeostasis. The promising outcomes of both in vitro and in vivo assays suggest that DNP-MRS may be a useful technique to study aspects of the TME. With continued improvements, this tool has the potential to study the TME and provide guidance for accurate patient stratification and precise personal therapy. Graphical Abstract.
Collapse
|
14
|
Yuan BF. Quantitative Analysis of Oncometabolite 2-Hydroxyglutarate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:161-172. [PMID: 33791981 DOI: 10.1007/978-3-030-51652-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) were demonstrated to induce the production and accumulation of oncometabolite 2-hydroxyglutarate (2HG). 2HG is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG-dependent dioxygenases that are critical for regulating the metabolic and epigenetic state of cells. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and therefore occurs in two enantiomers, D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG). Each enantiomer is produced and metabolized in independent biochemical pathway and catalyzed by different enzymes. The accurate diagnosis of 2HG-related diseases relies on determining the configuration of the two enantiomers. Quantitative methods for analysis of D-2HG and L-2HG have been well developed. These analytical strategies mainly include the use of chiral chromatography medium to facilitate chromatographic separation of enantiomers prior to spectroscopy or mass spectrometry analysis and the use of chiral derivatization reagents to convert the enantiomers to diastereomers with differential physical and chemical properties that can improve their chromatographic separation. Here, we summarize and discuss these established methods for analysis of total 2HG as well as the determination of the enantiomers of D-2HG and L-2HG.
Collapse
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Maniam S, Maniam S. Cancer Cell Metabolites: Updates on Current Tracing Methods. Chembiochem 2020; 21:3476-3488. [PMID: 32639076 DOI: 10.1002/cbic.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Cancer is the second leading cause of death-1 in 6 deaths globally is due to cancer. Cancer metabolism is a complex and one of the most actively researched area in cancer biology. Metabolic reprogramming in cancer cells entails activities that involve several enzymes and metabolites to convert nutrient into building blocks that alter energy metabolism to fuel rapid cell division. Metabolic dependencies in cancer generate signature metabolites that have key regulatory roles in tumorigenesis. In this minireview, we highlight recent advances in the popular methods ingrained in biochemistry research such as stable and flux isotope analysis, as well as radioisotope labeling, which are valuable in elucidating cancer metabolites. These methods together with analytical tools such as chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry have helped to bring about exploratory work in understanding the role of important as well as obscure metabolites in cancer cells. Information obtained from these analyses significantly contribute in the diagnosis and prognosis of tumors leading to potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Applied Science, RMIT University, 240 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
16
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Jagannathan NR. Application of in vivo MR methods in the study of breast cancer metabolism. NMR IN BIOMEDICINE 2019; 32:e4032. [PMID: 30456917 DOI: 10.1002/nbm.4032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/25/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
In the last two decades, various in vivo MR methodologies have been evaluated for their potential in the study of cancer metabolism. During malignant transformation, metabolic alterations occur, leading to morphological and functional changes. Among various MR methods, in vivo MRS has been extensively used in breast cancer to study the metabolism of cells, tissues or whole organs. It provides biochemical information at the metabolite level. Altered choline, phospholipid and energy metabolism has been documented using proton (1 H), phosphorus (31 P) and carbon (13 C) isotopes. Increased levels of choline-containing compounds, phosphomonoesters and phosphodiesters in breast cancer, which are indicative of altered choline and phospholipid metabolism, have been reported using in vivo, in vitro and ex vivo NMR studies. These changes are reversed on successful therapy, which depends on the treatment regimen given. Monitoring the various tumor intermediary metabolic pathways using nuclear spin hyperpolarization of 13 C-labeled substrates by dynamic nuclear polarization has also been recently reported. Furthermore, the utility of various methods such as diffusion, dynamic contrast and perfusion MRI have also been evaluated to study breast tumor metabolism. Parameters such as tumor volume, apparent diffusion coefficient, volume transfer coefficient and extracellular volume ratio are estimated. These parameters provide information on the changes in tumor microstructure, microenvironment, abnormal vasculature, permeability and grade of the tumor. Such changes seen during cancer progression are due to alterations in the tumor metabolism, leading to changes in cell architecture. Due to architectural changes, the tissue mechanical properties are altered; this can be studied using magnetic resonance elastography, which measures the elastic properties of tissues. Moreover, these structural MRI methods can be used to investigate the effect of therapy-induced changes in tumor characteristics. This review discusses the potential of various in vivo MR methodologies in the study of breast cancer metabolism.
Collapse
|
18
|
Wong YKE, Lam KW, Ho KY, Yu CSA, Cho WCS, Tsang HF, Chu MKM, Ng PWL, Tai CSW, Chan LWC, Wong EYL, Wong SCC. The applications of big data in molecular diagnostics. Expert Rev Mol Diagn 2019; 19:905-917. [PMID: 31422710 DOI: 10.1080/14737159.2019.1657834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Big Data technologies instilled an informational perspective to our understanding of the world. However, fundamental issues such as the management and storage of data can create privacy concerns. Heterogeneous types of data pose challenges in reproducibility and standardization. It is now an opportunity for us to help the health-care professionals, educators, and policy-makers understand the impact of Big Data, and steer the development roadmap to positively impact the molecular diagnostic industry. Area covered: In this review, we discuss the latest trends in applying Big Data to several key areas of molecular diagnostics: metagenomics, Mendelian disease screening, personalized medicine, and metabolomics. The limitations of utilizing bioinformatics and Big Data analytic tools are also summarized. We further propose an action plan on how to prepare a new generation of health-care professionals to step into the age of Big Data through a tailor-made bioinformatics training program. Expert opinion: In order to cope with the development of these powerful technologies, issues of ethics, regulations, and data format standardization are urgently needed. Besides, a long-term planning to train medical scientists, pathologists, and specialists on bioinformatics is necessary. It is an appropriate time to review all these issues before implementing these tests for patients' diagnosis, prognosis and treatment efficacy.
Collapse
Affiliation(s)
- Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Ka Wai Lam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Ka Yi Ho
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | | | - William Chi-Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Hong Kong Special Administrative Region
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Man Kee Maggie Chu
- Department of Life Science, The Hong Kong University of Science and Technology , Hong Kong Special Administrative Region
| | - Po Wah Lawrence Ng
- Department of Pathology, Queen Elizabeth Hospital , Hong Kong Special Administrative Region
| | - Chi Shing William Tai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| |
Collapse
|
19
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Caracciolo F, Charlaftis E, Melone L, Carretta P. Molecular Dynamics and Hyperpolarization Performance of Deuterated β-Cyclodextrins. J Phys Chem B 2019; 123:3731-3737. [DOI: 10.1021/acs.jpcb.9b01857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering G. Natta, Politecnico di Milano, 20133 Milano, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Geng H, Tong W, Han F, Zhu K, Cao Y, Chen X. The Role of Tumor Oxygenation Tested by Magnetic Resonance Imaging (MRI) in Prostate Cancer Grading. Med Sci Monit 2019; 25:2505-2510. [PMID: 30950457 PMCID: PMC6463617 DOI: 10.12659/msm.913110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Prostate cancer is a common malignant tumor in males. Prostate cancer grading is an important basis for evaluation of invasion. The purpose of this article was to use dynamic enhanced scan magnetic resonance imaging (MRI) to quantitatively investigate the relationship between tumor oxygenation value and prostate cancer pathological Gleason score. Material/Methods A total of 312 prostate cancer patients diagnosed by needle biopsy who received MRI dynamic enhanced scan were enrolled in this study. Multiparameter oxygen concentration image based on MRI was applied to test pO2 in tumors. Multiple spin resonance image relaxation time edit sequence and weak field diffusion model were used to estimate oxygen saturation level and pO2. hematoxylin and eosin staining and Gleason score were used to determine biological behavior and prognosis. Results According to the Gleason score system, there were 28 cases with a score of 10, 112 cases with a score of 9, 56 cases with a score of 8, and 116 cases with a score lower than 7. The enrolled patients were divided into groups: 116 cases into the middle-to-well differentiation group (Gleason score ≤7) and 196 cases into the poorly differentiation group (Gleason score at 8 to 10). Prostate cancer tumor oxygenation value was positively correlated with Gleason score (r=0.349, P<0.05) or PSA (r=0.432, P<0.05). Tumor oxygenation value in Gleason ≤7 group was obviously different from that in the group with Gleason score between 9 and 10 (P<0.05). Conclusions Tumor oxygenation value in prostate cancer was positively correlated with Gleason score. Tumor oxygenation value might be useful in clinics to evaluate prostate cancer grading and prognosis.
Collapse
Affiliation(s)
- Huaizhen Geng
- Department of Urology, Heze Municipal Hospital, Heze, Shandong, China (mainland)
| | - Wen Tong
- Department of Intensive Care Unit (ICU), Heze Municipal Hospital, Heze, Shandong, China (mainland)
| | - Fangzheng Han
- Department of Pathology, Heze Municipal Hospital, Heze, Shandong, China (mainland)
| | - Kunming Zhu
- Department of Radiology, Heze Municipal Hospital, Heze, Shandong, China (mainland)
| | - Yumei Cao
- Department of Cardiac Intervention, Heze Municipal Hospital, Heze, Shandong, China (mainland)
| | - Xiude Chen
- Department of Urology, Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, China (mainland)
| |
Collapse
|
22
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
23
|
Parish C, Niedbalski P, Kiswandhi A, Lumata L. Dynamic nuclear polarization of carbonyl and methyl 13C spins of acetate using 4-oxo-TEMPO free radical. J Chem Phys 2018; 149:054302. [PMID: 30089385 DOI: 10.1063/1.5043378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization of 13C-enriched biomolecules via dissolution dynamic nuclear polarization (DNP) has enabled real-time metabolic imaging of a variety of diseases with superb specificity and sensitivity. The source of the unprecedented liquid-state nuclear magnetic resonance spectroscopic or imaging signal enhancements of >10 000-fold is the microwave-driven DNP process that occurs at a relatively high magnetic field and cryogenic temperature. Herein, we have methodically investigated the relative efficiencies of 13C DNP of single or double 13C-labeled sodium acetate with or without 2H-enrichment of the methyl group and using a 4-oxo-TEMPO free radical as the polarizing agent at 3.35 T and 1.4 K. The main finding of this work is that not all 13C spins in acetate are polarized with equal DNP efficiency using this relatively wide electron spin resonance linewidth free radical. In fact, the carbonyl 13C spins have about twice the solid-state 13C polarization level of methyl 13C spins. Deuteration of the methyl group provides a DNP signal improvement of methyl 13C spins on a par with that of carbonyl 13C spins. On the other hand, both the double 13C-labeled [1,2-13C2] acetate and [1,2-13C2, 2H3] acetate have a relative solid-state 13C polarization at the level of [2-13C] acetate. Meanwhile, the solid-state 13C T1 relaxation times at 3.35 T and 1.4 K were essentially the same for all six isotopomers of 13C acetate. These results suggest that the intramolecular environment of 13C spins plays a prominent role in determining the 13C DNP efficiency, while the solid phase 13C T1 relaxation of these samples is dominated by the paramagnetic effect due to the relatively high concentration of free radicals.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Andhika Kiswandhi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
24
|
Caracciolo F, Paioni AL, Filibian M, Melone L, Carretta P. Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated β-Cyclodextrins. J Phys Chem B 2018; 122:1836-1845. [PMID: 29350528 DOI: 10.1021/acs.jpcb.7b11950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1H and 13C dynamic nuclear polarizations have been studied in 13C-enriched β-cyclodextrins doped with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl free radical. 1H and 13C polarizations raised above 7.5 and 7%, respectively, and for both nuclear species, the transfer of polarization from the electron spins appears to be consistent with a thermal mixing scenario for a concentration of 9 13C nuclei per molecule. When the concentration is increased to 21 13C nuclei per molecule, a decrease in the spin-lattice relaxation and polarization buildup rates is observed. This reduction is associated with the bottleneck effect induced by the decrease in the number of electron spins per nucleus when both the nuclear spin-lattice relaxation and the polarization occur through the electron non-Zeeman reservoir. 13C nuclear spin-lattice relaxation has been studied in the 1.8-340 K range, and the effects of internal molecular motions and of the free radicals on the relaxation are discussed. 13C hyperpolarization performances and room-temperature spin-lattice relaxation times show that these are promising materials for future biomedical applications.
Collapse
Affiliation(s)
| | - Alessandra Lucini Paioni
- Department of Physics, University of Pavia , 27100 Pavia, Italy.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marta Filibian
- Department of Physics, University of Pavia , 27100 Pavia, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering G. Natta, Politecnico di Milano , 20133 Milano, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia , 27100 Pavia, Italy
| |
Collapse
|
25
|
Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, Pressl C, Beattie BJ, Zanzonico PB, Gerecitano JF, Kelsen DP, Weber W, Lyashchenko SK, Kung HF, Lewis JS. In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology 2018; 287:667-675. [PMID: 29388903 DOI: 10.1148/radiol.2017162610] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose To assess the clinical safety, pharmacokinetics, and tumor imaging characteristics of fluorine 18-(2S,4R)-4-fluoroglutamine (FGln), a glutamine analog radiologic imaging agent. Materials and Methods This study was approved by the institutional review board and conducted under a U.S. Food and Drug Administration-approved Investigational New Drug application in accordance with the Helsinki Declaration and the Health Insurance Portability and Accountability Act. All patients provided written informed consent. Between January 2013 and October 2016, 25 adult patients with cancer received an intravenous bolus of FGln tracer (mean, 244 MBq ± 118, <100 μg) followed by positron emission tomography (PET) and blood radioassays. Patient data were summarized with descriptive statistics. FGln biodistribution and plasma amino acid levels in nonfasting patients (n = 13) were compared with those from patients who fasted at least 8 hours before injection (n = 12) by using nonparametric one-way analysis of variance with Bonferroni correction. Tumor FGln avidity versus fluorodeoxyglucose (FDG) avidity in patients with paired PET scans (n = 15) was evaluated with the Fisher exact test. P < .05 was considered indicative of a statistically significant difference. Results FGln PET depicted tumors of different cancer types (breast, pancreas, renal, neuroendocrine, lung, colon, lymphoma, bile duct, or glioma) in 17 of the 25 patients, predominantly clinically aggressive tumors with genetic mutations implicated in abnormal glutamine metabolism. Acute fasting had no significant effect on FGln biodistribution and plasma amino acid levels. FGln-avid tumors were uniformly FDG-avid but not vice versa (P = .07). Patients experienced no adverse effects. Conclusion Preliminary human FGln PET trial results provide clinical validation of abnormal glutamine metabolism as a potential tumor biomarker for targeted radiotracer imaging in several different cancer types. © RSNA, 2018 Online supplemental material is available for this article. Clinical trial registration no. NCT01697930.
Collapse
Affiliation(s)
- Mark P S Dunphy
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - James J Harding
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Sriram Venneti
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Hanwen Zhang
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Eva M Burnazi
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Jacqueline Bromberg
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Antonio M Omuro
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - James J Hsieh
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Ingo K Mellinghoff
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Kevin Staton
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Christina Pressl
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Bradley J Beattie
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Pat B Zanzonico
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - John F Gerecitano
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - David P Kelsen
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Wolfgang Weber
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Serge K Lyashchenko
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Hank F Kung
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| | - Jason S Lewis
- From the Department of Radiology (M.P.S.D., W.W., J.S.L.), Department of Medicine (J.J.H., J.B., A.M.O., J.J.H., I.K.M., J.F.G., D.P.K.), Radiochemistry and Molecular Imaging Probe Core (H.Z., E.M.B., S.K.L., J.S.L.), and Department of Medical Physics (B.J.B., P.B.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S113E, New York, NY 10065; Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY (H.Z., K.S., J.S.L.); Department of Radiology, Weill-Cornell Medical College, New York, NY (M.P.S.D., W.W., J.S.L.); Laboratory of Neural Systems, the Rockefeller University, New York, NY (C.P.); Department of Pathology, University of Michigan, Ann Arbor, Mich (S.V.); and Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, Pa (H.F.K.)
| |
Collapse
|
26
|
Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018; 26:81-92. [PMID: 29212309 PMCID: PMC5746040 DOI: 10.4062/biomolther.2017.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Salamanca-Cardona L, Shah H, Poot AJ, Correa FM, Di Gialleonardo V, Lui H, Miloushev VZ, Granlund KL, Tee SS, Cross JR, Thompson CB, Keshari KR. In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors. Cell Metab 2017; 26:830-841.e3. [PMID: 29056515 PMCID: PMC5718944 DOI: 10.1016/j.cmet.2017.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) is a signature biomarker in various cancers, where it accumulates as a result of mutations in isocitrate dehydrogenase (IDH). The metabolic source of 2-HG, in a wide variety of cancers, dictates both its generation and also potential therapeutic strategies, but this remains difficult to access in vivo. Here, utilizing patient-derived chondrosarcoma cells harboring endogenous mutations in IDH1 and IDH2, we report that 2-HG can be rapidly generated from glutamine in vitro. Then, using hyperpolarized magnetic resonance imaging (HP-MRI), we demonstrate that in vivo HP [1-13C] glutamine can be used to non-invasively measure glutamine-derived HP 2-HG production. This can be readily modulated utilizing a selective IDH1 inhibitor, opening the door to targeting glutamine-derived 2-HG therapeutically. Rapid rates of HP 2-HG generation in vivo further demonstrate that, in a context-dependent manner, glutamine can be a primary carbon source for 2-HG production in mutant IDH tumors.
Collapse
Affiliation(s)
- Lucia Salamanca-Cardona
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hardik Shah
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alex J Poot
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Fabian M Correa
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Valentina Di Gialleonardo
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hui Lui
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Vesselin Z Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Sui S Tee
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
28
|
Silvers MA, Deja S, Singh N, Egnatchik RA, Sudderth J, Luo X, Beg MS, Burgess SC, DeBerardinis RJ, Boothman DA, Merritt ME. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. J Biol Chem 2017; 292:18203-18216. [PMID: 28916726 DOI: 10.1074/jbc.m117.813923] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. β-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target. β-Lapachone's therapeutic efficacy partially stems from the drug's induction of a futile NQO1-mediated redox cycle that causes high levels of superoxide and then peroxide formation, which damages DNA and causes hyperactivation of poly(ADP-ribose) polymerase, resulting in extensive NAD+/ATP depletion. However, the effects of this drug on energy metabolism due to NAD+ depletion were never described. The futile redox cycle rapidly consumes O2, rendering standard assays of Krebs cycle turnover unusable. In this study, a multimodal analysis, including metabolic imaging using hyperpolarized pyruvate, points to reduced oxidative flux due to NAD+ depletion after β-lapachone treatment of NQO1+ human pancreatic cancer cells. NAD+-sensitive pathways, such as glycolysis, flux through lactate dehydrogenase, and the citric acid cycle (as inferred by flux through pyruvate dehydrogenase), were down-regulated by β-lapachone treatment. Changes in flux through these pathways should generate biomarkers useful for in vivo dose responses of β-lapachone treatment in humans, avoiding toxic side effects. Targeting the enzymes in these pathways for therapeutic treatment may have the potential to synergize with β-lapachone treatment, creating unique NQO1-selective combinatorial therapies for specific cancers. These findings warrant future studies of intermediary metabolism in patients treated with β-lapachone.
Collapse
Affiliation(s)
- Molly A Silvers
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | - Stanislaw Deja
- Advanced Imaging Research Center (AIRC), Division of Metabolic Mechanisms of Disease
| | - Naveen Singh
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | - Robert A Egnatchik
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - Jessica Sudderth
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - Xiuquan Luo
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center
| | | | - Shawn C Burgess
- Advanced Imaging Research Center (AIRC), Division of Metabolic Mechanisms of Disease
| | - Ralph J DeBerardinis
- the Children's Medical Center Research Institute, Simmons Comprehensive Cancer Center
| | - David A Boothman
- From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center,
| | - Matthew E Merritt
- the AIRC, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
29
|
Halbrook CJ, Lyssiotis CA. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell 2017; 31:5-19. [PMID: 28073003 DOI: 10.1016/j.ccell.2016.12.006] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is on pace to become the second leading cause of cancer-related death. The high mortality rate results from a lack of methods for early detection and the inability to successfully treat patients once diagnosed. Pancreatic cancer cells have extensively reprogrammed metabolism, which is driven by oncogene-mediated cell-autonomous pathways, the unique physiology of the tumor microenvironment, and interactions with non-cancer cells. In this review, we discuss how recent efforts delineating rewired metabolic networks in pancreatic cancer have revealed new in-roads to develop detection and treatment strategies for this dreadful disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Hyperpolarization MRI: Preclinical Models and Potential Applications in Neuroradiology. Top Magn Reson Imaging 2016; 25:31-7. [PMID: 26848559 DOI: 10.1097/rmr.0000000000000076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperpolarization is a novel technology that can dramatically increase signal to noise in magnetic resonance. The method is being applied to small injectable endogenous molecules, which can be used to monitor transient in vivo metabolic events, in real time. The emergence of hyperpolarized C-labeled probes, specifically C pyruvate, has enabled monitoring of core cellular metabolic events. Neuro-oncological applications have been demonstrated in preclinical models. Many more applications of this technology are envisioned, with transformative potential in magnetic resonance imaging.
Collapse
|
31
|
Gelman SJ, Patti GJ. Profiling cancer metabolism at the 'omic' level: a last resort or the next frontier? Cancer Metab 2016; 4:2. [PMID: 27004124 PMCID: PMC4800773 DOI: 10.1186/s40170-016-0144-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Susan J Gelman
- Department of Chemistry, Washington University, St. Louis, MO 63130 ᅟ ; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 ᅟ
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63130 ᅟ ; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 ᅟ
| |
Collapse
|
32
|
Comment A. Dissolution DNP for in vivo preclinical studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:39-48. [PMID: 26920829 DOI: 10.1016/j.jmr.2015.12.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.
Collapse
Affiliation(s)
- Arnaud Comment
- General Electric Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Buckinghamshire HP8 4SP, United Kingdom; Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Mertan FV, Berman R, Szajek K, Pinto PA, Choyke PL, Turkbey B. Evaluating the Role of mpMRI in Prostate Cancer Assessment. Expert Rev Med Devices 2016; 13:129-41. [PMID: 26690507 PMCID: PMC6364697 DOI: 10.1586/17434440.2016.1134311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common malignancy among American men. The role of multi-parametric MRI has recently gained more importance in detection of prostate cancer, its targeted biopsy, and focal therapy guidance. In this review, uses of multi-parametric MRI in prostate cancer assessment and treatment are discussed.
Collapse
Affiliation(s)
| | - Rose Berman
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| | - Kathryn Szajek
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
- Department of Science, Mount St. Mary’s University, Emmitsburg, MD, USA
| | | | | | - Baris Turkbey
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|