1
|
Moretto L, Girardi E, Vieira ACM, Brondani LDA, Lemos NE, Canani LH, Fiegenbaum M, Dieter C, Crispim D. The rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms are associated with changes in laboratory markers of renal damage among patients with type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 69:e240167. [PMID: 40271977 PMCID: PMC12017629 DOI: 10.20945/2359-4292-2024-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/05/2024] [Indexed: 04/25/2025]
Abstract
OBJECTIVE To investigate the association between the rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms and diabetic kidney disease in patients with type 2 diabetes mellitus. METHODS The sample consisted of 740 patients with type 2 diabetes mellitus and diabetic kidney disease (cases) and 303 patients with type 2 diabetes mellitus, but no diabetic kidney disease (controls). The genotyping of the polymorphisms was conducted using real-time polymerase chain reaction with Taqman probes. RESULTS The frequency of the rs3844492/ARHGAP22 G/G genotype was 16.8% in the control group and 15.7% in cases (p = 0.069). After adjusting for covariables, the presence of the G allele was associated with risk for diabetic kidney disease (OR = 1.435, 95% CI 1.023 - 2.011; p = 0.036), as well as with a decreased estimated glomerular filtration rate (p = 0.012) and elevated creatinine levels (p = 0.009). No difference was observed in the rs741301/ELMO1 genotype frequencies between groups (p = 0.800). However, the presence of the C allele appears to be associated with higher creatinine levels in patients with type 2 diabetes mellitus (p = 0.064). CONCLUSION The rs3844492/ARHGAP22 and rs741301/ELMO1 polymorphisms are associated with alterations in renal function markers among patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Luciane Moretto
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Eliandra Girardi
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Anna Carolina Meireles Vieira
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Letícia de Almeida Brondani
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Unidade de Pesquisa Laboratorial, Centro de Pesquisa Experimental
Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Natália Emerim Lemos
- Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luís Henrique Canani
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Marilu Fiegenbaum
- Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Cristine Dieter
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Serviço de Endocrinologia, Hospital de Clínicas de
Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Medicina
Interna., Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
2
|
Moretto L, Brondani LDA, Girardi E, Vieira ACM, Lemos NE, Fiegenbaum M, Canani LH, Crispim D, Dieter C. The C allele of the rs741301 polymorphism in the ELMO1 gene is associated with increased risk of diabetic retinopathy in patients with type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240283. [PMID: 40215453 PMCID: PMC11967185 DOI: 10.20945/2359-4292-2024-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To investigate the association of the rs741301 polymorphism in the ELMO1 gene with diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This study analyzed 350 patients withT2DM and DR (cases) and 234 patients withT2DM without this complication but with more than 10 years of diabetes mellitus (DM) (controls). DR was diagnosed by indirect fundoscopy. Genotyping was performed by allelic discrimination real-time PCR. RESULTS The frequency of the C/C genotype of the rs741301 polymorphism in the ELMO1 gene was 26.9% in cases and 17.9% in controls (P = 0.011). After adjustment for covariables, the C/C genotype was associated with an increased risk of DR [odds ratio (OR) = 1.805, 95%CI 1.101-2.961; P = 0.019]. This association remained significant in dominant and additive inheritance models after adjustment for the same variables [OR = 1.597, 95%CI 1.089-2.343; P = 0.017; and OR = 1.818, 95%CI 1.099-3.007; P = 0.020]. CONCLUSION This study demonstrated an association between the presence of the C allele of the ELMO1 rs741301 polymorphism and an increased risk of DR in patients with T2DM from Southern Brazil.
Collapse
Affiliation(s)
- Luciane Moretto
- Serviço de Endocrinologia do Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Clínica
Médica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Letícia de Almeida Brondani
- Unidade de Pesquisa Laboratorial, Centro de Pesquisa Experimental, Hospital
de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Eliandra Girardi
- Serviço de Endocrinologia do Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brasil
| | | | - Natália Emerim Lemos
- Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilu Fiegenbaum
- Programa de Pós-graduação em Biociências,
Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS,
Brasil
| | - Luís Henrique Canani
- Serviço de Endocrinologia do Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Clínica
Médica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Serviço de Endocrinologia do Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Clínica
Médica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Cristine Dieter
- Serviço de Endocrinologia do Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências
Médicas: Endocrinologia, Faculdade de Medicina, Departamento de Clínica
Médica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
3
|
Martínez-Nava Y, Ogaz-Escarpita MC, Reza-López SA, Leal-Berumen I. Diabetic kidney disease and polymorphisms of the ELMO1 and AGTR1 genes: Systematic review. Nefrologia 2025; 45:194-213. [PMID: 40038011 DOI: 10.1016/j.nefroe.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the main complications of diabetes, the main cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) worldwide. The etiopathogenesis of DKD is complex and multifactorial; recently, genetic susceptibility has gained relevance since certain ethnicities, such as Native Americans and Mexican Americans, have a higher risk of developing this disease. Numerous studies have described that single nucleotide polymorphisms (SNPs), including those for ELMO1 and AGTR1 genes, could be associated with DKD. OBJECTIVE To carry out a systematic review of the scientific literature on the association of SNPs of the ELMO1 and AGTR1 gene with DKD in adult patients with type 2 diabetes mellitus (T2D). METHODS Systematic review in PubMed, Google Scholar, Worldwide Science, and Science Direct databases. The selection of publications was carried out following the guidelines proposed by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses). Original articles that reported results in the adult population with T2D were included. Information about the allelic and genotypic frequencies of the SNPs and their association with DKD was obtained. RESULTS The polymorphisms most frequently associated with a DKD higher risk were rs741301, rs1345365, and rs10951509 for the ELMO1 gene, whereas the rs5186 and rs388915 for the AGTR1 gene. CONCLUSION The risk of developing DKD depends on several factors, including the genetic susceptibility conferred by the ELMO1 and AGTR1 gene polymorphisms, without ignoring the patient's lifestyle and environmental factors. The studies about these polymorphisms' association with DKD will allow a better understanding of non-modifiable risk factors for developing this disease and recognize the differences between different studied ethnicities, which would allow faster detection of patients with T2D susceptible to developing DKD, become early markers of kidney damage, as well as implementing preventive strategies on the most susceptible ethnicities.
Collapse
Affiliation(s)
- Yuliana Martínez-Nava
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico; Departamento de Medicina Interna, Hospital General de Zona no. 6, Benito Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - María Camila Ogaz-Escarpita
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico
| | - Sandra Alicia Reza-López
- Laboratorio de Embriología, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico
| | - Irene Leal-Berumen
- Laboratorio de Biología Molecular, Universidad Autónoma de Chihuahua, Facultad de Medicina y Ciencias Biomédicas, Chihuahua, Mexico.
| |
Collapse
|
4
|
Azarboo A, Hosseinkhani S, Ghaseminejad-Raeini A, Aazami H, Mohammadi SM, Zeidi S, Razi F, Bandarian F. Association between ELMO1 gene polymorphisms and diabetic kidney disease: A systematic review and meta-analysis. PLoS One 2024; 19:e0295607. [PMID: 38277369 PMCID: PMC10817128 DOI: 10.1371/journal.pone.0295607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/25/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Previous research has suggested that the ELMO1 gene may play a role in the development of diabetic kidney disease. Diabetic kidney disease (DKD) is a serious complication of diabetes and the leading cause of chronic kidney disease and end-stage renal disease (ESRD). OBJECTIVE AND RATIONALE This study aim was to systematically review and explore the association between ELMO1 gene polymorphisms and diabetic kidney disease. A comprehensive systematic review provides a clear conclusion and high-level evidence for the association between ELMO1 gene and DKD for future application in personalized medicine. METHODS A comprehensive search of electronic databases, per PRISMA instructions, was conducted in Scopus, EMBASE, Web of Science, and PubMed databases from 1980 to January 2023. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using appropriate models. Subgroup and sensitivity analyses were performed to explore potential sources of heterogeneity and assess the robustness of the findings. RESULTS A total of 5794 diabetes patients with DKD, 4886 diabetes patients without DKD, and 2023 healthy controls were included in the 17 studies that made up this systematic review. In the investigation of DM (Diabetes Mellitus) with DKD vs. DM without DKD, the susceptibility for DKD for the EMLO1 rs741301 polymorphism indicated a significant difference under the dominant, homozygote, and recessive genetic models. The susceptibility for DKD for the EMLO1 rs1345365, rs10255208, and rs7782979 polymorphisms demonstrated a significant difference under the allele genetic models in the analysis of DM with DKD vs. DM without DKD groups. There was a considerable increase in DKD risk in the Middle East when the population was stratified by the region. CONCLUSION The findings of the meta-analysis show that there are a significant connection between the EMLO1 rs741301 polymorphism and DKD susceptibility in overall analyses; as well as rs1345365, rs10255208, and rs7782979 polymorphisms; especially in the Middle East region.
Collapse
Affiliation(s)
- Alireza Azarboo
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Ghaseminejad-Raeini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Aazami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Zeidi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
6
|
Hashemi E, Dehghanbanadaki H, Baharanchi AA, Forouzanfar K, Kakaei A, Mohammadi SM, Zeidi S, Razi F. WT1 and ACE mRNAs of blood extracellular vesicle as biomarkers of diabetic nephropathy. J Transl Med 2021; 19:299. [PMID: 34246281 PMCID: PMC8272332 DOI: 10.1186/s12967-021-02964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diabetic nephropathy (DN) has an increasing global prevalence with excessive health expenditure and burden. Exosomal mRNAs regulate intercellular communications and participate in the pathogenesis of various disorders like DN. This study aimed to assess the expression levels of ACE, ELMO1, and WT1 mRNAs in the blood extracellular vesicles (EVs) of DN patients and diabetic patients without nephropathy (DM group) in comparison to healthy controls and investigate their correlations with the severity of DN. Methods The performed investigation is a cross-sectional study of 256 participants including 103 DN patients, 100 DM patients, and 53 healthy controls. The quantification of WT1, ACE, and ELMO1 mRNAs in the blood EVs were executed using qRT-PCR. The ROC analysis was performed to determine the diagnostic accuracy of mRNAs. Results DN patients had significantly higher expressed WT1 mRNA (1.70-fold change) and lower expressed ACE mRNA (0.55-fold change) in the blood EVs compared to DM patients and controls. ELMO1 mRNA was not expressed in EVs of any groups. A positive correlation between WT1 mRNA level and urine Alb/Cr ratio (r = 0.602, p < 0.001) and a negative correlation between ACE mRNA expression and urine Alb/Cr ratio within DN patients (r = − 0.474, p < 0.001) was identified. The accuracy of WT1 mRNA and 1/ACE mRNA for predicting incipient DN was 0.63 (95% CI 0.55, 0.72) and 0.62 (95% CI 0.54, 0.71), and for predicting overt DN was 0.83 (95% CI 0.74, 0.92) and 0.75 (95% CI 0.66, 0.83), respectively. Conclusions WT1 and ACE mRNAs level in blood EVs were predictors for early diagnosis of DN therefore their quantifications might be used to determine the severity of albuminuria and glomerular injuries. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02964-6.
Collapse
Affiliation(s)
- Ehsan Hashemi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abbasi Baharanchi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965-16, Tehran, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical SciencesInstitute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mohammadi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Zeidi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Omar TA, Zewain SK, Ghonaim MM, Refaat KA, Abou-Elela DH. Role of engulfment and cell motility 1 (ELMO1) gene polymorphism in development of diabetic kidney disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00167-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetic kidney disease (DKD) is a progressive kidney disease that affects diabetic patients irrespective of glycemic state or hypertension. Therefore, early detection of DKD is of critical importance. Many genome-wide association studies have identified the engulfment and cell motility 1 (ELMO1) gene as a genetic marker linked to DKD. This study aimed to investigate the association between ELMO1 rs741301 gene polymorphism and the development of DKD among Egyptian patients with type 2 diabetes mellitus (T2DM). Allele and genotype frequencies were investigated in 304 subjects by real-time PCR allelic discrimination assay: 100 DKD patients, 102 diabetic patients without DKD, and 102 healthy controls.
Results
GG genotype of ELMO1 (rs741301) SNP and its allele frequencies were significantly high in all diabetic patients. GG genotype had an odds ratio (OR) of 6.095 and 95% confidence interval (CI) of 2.456–15.125, p < 0.001, while the frequent allele G had an OR of 2.366 and 95% CI of 1.450–3.859, p = 0.001. No significant difference was observed between T2DM without DKD and DKD.
Conclusion
Our results could not establish an association between the ELMO1 rs741301 variant and the progression of DKD.
Collapse
|
8
|
Rashad NM, Sherif MH, El-Shal AS, Abdelsamad MAE. The expression profile of circANKRD36 and ANKRD36 as diagnostic biomarkers of chronic kidney disease in patients with type 2 diabetes mellitus. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The molecular mechanisms for chronic kidney disease (CKD) remain largely unknown and appear to be multifactorial. In the current study, we aimed to study the circulatory levels of circular ankyrin repeat domain 36 (circANKRD36) and ANKRD36 in Egyptian patients with type 2 diabetes mellitus (T2DM) and CKD and to explore their associations with the progression of CKD. This cross-sectional controlled study enrolled 60 patients with T2DM and 40 controls. Real-time polymerase chain reaction (RT-PCR) and real-time quantitative PCR (RT-qPCR) analyses were used to detect the expression levels of circANKRD36 and ANKRD36.
Results
Our results detected that the relative expression levels of circANKRD36 and ANKRD36 were significantly higher in patients with T2DM compared to controls. CircANKRD36 and ANKRD36 were significantly overexpressed in patients with macroalbuminuria (0.2316±0.096, 0.0086±0.0035, respectively) compared microalbuminuria (0.1347±0.032, 0.0037±0.0008, respectively) as well as normoalbuminuria (0.1261±0.018, 0.0027±0.0004, respectively), p˂0.001*.
Conclusion
The relative expression levels of circANKRD36 and ANKRD36 were significantly increased in patients with T2DM more specifically in patients with diabetic nephropathy (DN) and macroalbuminuria.
Collapse
|
9
|
Darmayanti S, Lesmana R, Meiliana A, Abdulah R. Genomics, Proteomics and Metabolomics Approaches for Predicting Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients. Curr Diabetes Rev 2021; 17:e123120189796. [PMID: 33393899 DOI: 10.2174/1573399817666210101105253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a continuous rise in the prevalence of type 2 diabetes mellitus (T2DM) worldwide and most patients are unaware of the presence of this chronic disease at the early stages. T2DM is associated with complications related to long-term damage and failure of multiple organ systems caused by vascular changes associated with glycated end products, oxidative stress, mild inflammation, and neovascularization. Among the most frequent complications of T2DM observed in about 20-40% of T2DM patients is diabetes nephropathy (DN). METHODS A literature search was made in view of highlighting the novel applications of genomics, proteomics and metabolomics, as the new prospective strategy for predicting DN in T2DM patients. RESULTS The complexity of DN requires a comprehensive and unbiased approach to investigate the main causes of disease and identify the most important mechanisms underlying its development. With the help of evolving throughput technology, rapidly evolving information can now be applied to clinical practice. DISCUSSION DN is also the leading cause of end-stage renal disease and comorbidity independent of T2DM. In terms of the comorbidity level, DN has many phenotypes; therefore, timely diagnosis is required to prevent these complications. Currently, urine albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) are gold standards for assessing glomerular damage and changes in renal function. However, GFR estimation based on creatinine is limited to hyperfiltration status; therefore, this makes albuminuria and eGFR indicators less reliable for early-stage diagnosis of DN. CONCLUSION The combination of genomics, proteomics, and metabolomics assays as suitable biological systems can provide new and deeper insights into the pathogenesis of diabetes, as well as discover prospects for developing suitable and targeted interventions.
Collapse
Affiliation(s)
- Siska Darmayanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
10
|
Yang J, Xiong X, Xiao Y, Wei L, Li L, Yang M, Han Y, Zhao H, Li C, Jiang N, Xiong S, Zeng L, Zhou Z, Liu S, Wang N, Fan Y, Sun L. The single nucleotide polymorphism rs11643718 in SLC12A3 is associated with the development of diabetic kidney disease in Chinese people with type 2 diabetes. Diabet Med 2020; 37:1879-1889. [PMID: 32634861 PMCID: PMC7589246 DOI: 10.1111/dme.14364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 01/05/2023]
Abstract
AIMS To examine the association between 24 literature-based single nucleotide polymorphisms and diabetic kidney disease in Chinese people with type 2 diabetes. METHODS AND RESULTS Twenty-four candidate diabetic kidney disease-susceptible single nucleotide polymorphisms were genotyped in 208 participants with type 2 diabetes and diabetic kidney disease and 200 participants with type 2 diabetes without diabetic kidney disease (case and control groups, respectively), together with 206 healthy participants using MassARRAY. Rs11643718 in the SLC12A3 gene was associated with diabetic kidney disease in the recessive model after adjusting for confounding factors, such as age and gender (adjusted odds ratio 2.056, 95% CI 1.120-3.776; P = 0.020). Meta-analyses further confirmed the association (P = 0.002). In addition, participants with the GG genotype had worse renal function and more albuminuria than those with the AA+AG genotype (P < 0.05). Renal section immunohistochemistry was conducted in participants with type 2 diabetes, diabetic kidney disease and AA+AG or GG genotypes and in participants with glomerular minor lesions. Together with data from the Nephroseq database, it was shown that the abundance of SLC12A3 was reduced in patients with the GG genotype, while elevated expression of SLC12A3 was associated with better renal function. In addition, rs10951509 and rs1345365 in ELMO1, which were determined to be in high linkage disequilibrium by SHEsis software, were also associated with diabetic kidney disease (adjusted P = 0.010 and 0.015, respectively). CONCLUSIONS The G allele and GG genotype of SLC12A3 rs11643718 are associated with the development of diabetic kidney disease in a Chinese population with type 2 diabetes.
Collapse
Affiliation(s)
- J.‐F. Yang
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - X.‐F. Xiong
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - Y. Xiao
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - L. Wei
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - L. Li
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - M. Yang
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - Y.‐C. Han
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - H. Zhao
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - C.‐R. Li
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - N. Jiang
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - S. Xiong
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - L.‐F. Zeng
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| | - Z.‐G. Zhou
- National Clinical Research Centre for Metabolic Diseases Diabetes CentreDepartment of EndocrinologySecond Xiangya Hospital at Central South UniversityChangshaChina
| | - S.‐P. Liu
- National Clinical Research Centre for Metabolic Diseases Diabetes CentreDepartment of EndocrinologySecond Xiangya Hospital at Central South UniversityChangshaChina
| | - N.‐S. Wang
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Y. Fan
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - L. Sun
- Department of NephrologyHunan Key Laboratory of Kidney Disease and Blood PurificationSecond Xiangya Hospital at Central South UniversityChangshaChina
| |
Collapse
|
11
|
Bayoumy NMK, El-Shabrawi MM, Leheta OF, Abo El-Ela AEDM, Omar HH. Association of ELMO1 gene polymorphism and diabetic nephropathy among Egyptian patients with type 2 diabetes mellitus. Diabetes Metab Res Rev 2020; 36:e3299. [PMID: 32043290 DOI: 10.1002/dmrr.3299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetic nephropathy (DN) is the most common cause of end stage renal failure or even death among patients with type 2 diabetes mellitus. Genetic predisposition is widely studied among these patients to identify manageable aspects of the disease pathogenesis. This study was carried out to test the association of engulfment and cell motility 1 (ELMO1) gene polymorphism with DN among Egyptians. ELMO1 is required for phagocytosis of apoptotic cells and cell motility. METHODS This case-control study was conducted on type 2 diabetic patients who attended Suez Canal University Hospital, Egypt, between November 2016 and October 2017. Peripheral blood was collected from 200 diabetic patients (without nephropathy), 200 patients with DN, and 100 healthy controls for DNA extraction. The single nucleotide polymorphism of ELMO1 (rs741301) was genotyped using real-time polymerase chain reaction and the allele discrimination technique. RESULTS GG genotype was significantly associated with DN (odds ratio [OR] = 2.7; 95% confidence interval [CI]: 1.4-5.3) (P = .016). The OR for the high-risk allele (G) was 1.9 with 95% CI from 1.5 to 2.9 (P < .001). CONCLUSION ELMO1 gene (rs741301) polymorphism is a candidate variant in the predisposition to DN.
Collapse
Affiliation(s)
- Nervana M K Bayoumy
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ola F Leheta
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Alaa El-Din M Abo El-Ela
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy H Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Kakoki M, Bahnson EM, Hagaman JR, Siletzky RM, Grant R, Kayashima Y, Li F, Lee EY, Sun MT, Taylor JM, Rice JC, Almeida MF, Bahr BA, Jennette JC, Smithies O, Maeda-Smithies N. Engulfment and cell motility protein 1 potentiates diabetic cardiomyopathy via Rac-dependent and Rac-independent ROS production. JCI Insight 2019; 4:127660. [PMID: 31217360 DOI: 10.1172/jci.insight.127660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023] Open
Abstract
Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward M Bahnson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John R Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robin M Siletzky
- Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruriko Grant
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Esther Y Lee
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle T Sun
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica C Rice
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Gu HF. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front Genet 2019; 10:507. [PMID: 31231424 PMCID: PMC6566106 DOI: 10.3389/fgene.2019.00507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease is a worldwide health crisis, while diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease (ESRD). DKD is a microvascular complication and occurs in 30–40% of diabetes patients. Epidemiological investigations and clinical observations on the familial clustering and heritability in DKD have highlighted an underlying genetic susceptibility. Furthermore, DKD is a progressive and long-term diabetic complication, in which epigenetic effects and environmental factors interact with an individual’s genetic background. In recent years, researchers have undertaken genetic and epigenetic studies of DKD in order to better understand its molecular mechanisms. In this review, clinical material, research approaches and experimental designs that have been used for genetic and epigenetic studies of DKD are described. Current information from genetic and epigenetic studies of DKD and ESRD in patients with diabetes, including the approaches of genome-wide association study (GWAS) or epigenome-wide association study (EWAS) and candidate gene association analyses, are summarized. Further investigation of molecular defects in DKD with new approaches such as next generation sequencing analysis and phenome-wide association study (PheWAS) is also discussed.
Collapse
Affiliation(s)
- Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Jeong KH, Kim JS, Woo JT, Rhee SY, Lee YH, Kim YG, Moon JY, Kim SK, Kang SW, Lee SH, Kim YH. Genome-wide association study identifies new susceptibility loci for diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin Genet 2019; 96:35-42. [PMID: 30883692 DOI: 10.1111/cge.13538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Genetic factors are considered to be important in the pathogenesis of diabetic nephropathy (DN). Despite several genome-wide association studies (GWASs) demonstrating that specific polymorphisms of candidate genes were associated with DN, there were some limitations in previous studies. We conducted a GWAS using customized DNA chips to identify novel susceptibility loci for DN in Korean. We analyzed a total of 414 DN cases and 474 normoalbuminuric diabetic hyper-controls across two stages using customized DNA chips containing 98 667 single nucleotide polymorphisms (SNPs). We explored the associations between SNPs and DN in samples from 87 DN cases, mostly confirmed by renal biopsy, and 104 diabetic hyper-controls, and replicated these associations in independent cohort samples with 327 DN cases and 370 diabetic hyper-controls. The top significant SNPs from the discovery samples were selected for replication in the independent cohort. rs3765156 in PIK3C2B was significantly associated with DN in the replication cohort after multiple test. The SNPs identified in our study provide new insights into the pathogenesis of DN in the Korean population. Additional studies are needed to determine biological effects and clinical utility of our findings.
Collapse
Affiliation(s)
- Kyung H Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jin S Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang Y Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yang G Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Su K Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sun W Kang
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | - Sang H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeong H Kim
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | | |
Collapse
|
15
|
Hou Y, Gao Y, Zhang Y, Lin ST, Yu Y, Yang L. Interaction between ELMO1 gene polymorphisms and environment factors on susceptibility to diabetic nephropathy in Chinese Han population. Diabetol Metab Syndr 2019; 11:97. [PMID: 31798690 PMCID: PMC6882154 DOI: 10.1186/s13098-019-0492-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The association of diabetic nephropathy (DN) risk with single nucleotide polymorphisms (SNPs) within Engulfment and Cell Motility 1 (ELMO1) gene and gene-environment synergistic effect have not been extensively examined in, therefore, the purpose of this study is to explore the association between multiple SNPs in ELMO1 gene, and the relationship between gene-environment synergy effect and the risk of DN. METHODS Genotyping for 4 SNPs was performed with polymerase chain reaction (PCR) and following restriction fragment length polymorphism (RFLP) methods. Hardy-Weinberg balance of the control group was tested by SNPstats (online software: http://bioinfo.iconologia.net/snpstats). The best combination of four SNPs of ELMO1 gene and environmental factors was screened by GMDR model. Logistic regression was used to calculating the OR values between different genotypes of ELMO1 gene and DN. RESULTS The rs741301-G allele and the rs10255208-GG genotype were associated with an increased risk of DN risk, adjusted ORs (95% CI) were 1.75 (1.19-2.28) and 1.41 (1.06-1.92), respectively, both p-values were < 0.001. We also found that the others SNPs-rs1345365 and rs7782979 were not significantly associated with susceptibility to DN. GMDR model found a significant gene-alcohol drinking interaction combination (p = 0.0107), but no significant gene-hypertension interaction combinations. Alcohol drinkers with rs741301-AG/GG genotype also have the highest DN risk, compared to never drinkers with rs741301-AA genotype, OR (95% CI) 3.52 (1.93-4.98). CONCLUSIONS The rs741301-G allele and the rs10255208-GG genotype, gene-environment interaction between rs741301 and alcohol drinking were all associated with increased DN risk.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Yong Gao
- Department of Critical Care, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Yan Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Si-Tong Lin
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Yue Yu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
16
|
Asgarbeik S, Mohammad Amoli M, Enayati S, Bandarian F, Nasli-Esfahani E, Forouzanfar K, Razi F, Angaji SA. The Role of ERRFI1+808T/G Polymorphism in Diabetic Nephropathy. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:49-55. [PMID: 32351909 PMCID: PMC7175607 DOI: 10.22088/ijmcm.bums.8.2.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
Nephropathy is a common diabetes complication. ERRFI1 gene which participates in various cellular pathways has been proposed as a candidate gene in diabetic nephropathy. This study aimed to investigate the role of +808T/G polymorphism (rs377349) in ERRFI1 gene in diabetic nephropathy. In this case-control study, patients including diabetes with nephropathy (DN=104), type 2 diabetes without nephropathy (DM=100), and healthy controls (HC=106) were included. DNA was extracted from blood, and genotyping of the +808T/G polymorphism was carried out using PCR-RFLP technique. The differences for genotype and allele frequencies for +808T/G polymorphism in ERRFI1 gene between DN vs. HC and DN+DM vs. HC were significant (P<0.05) while no significant difference between DN and DM was observed. The allele frequencies were significantly different in DN vs. HC and DN+DM vs. HC in males but not in females. G allele of +808T/G polymorphism in ERRFI1 gene has no significant role in development and progression of diabetic nephropathy in diabetes patients while it is a risk allele for developing diabetes in Iranian population.
Collapse
Affiliation(s)
- Saeedeh Asgarbeik
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abdolhamid Angaji
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
17
|
Razi F, Meshkani MA, Zarrabi F, Sadr M, Asgarbeik S, Bandarian F, Forouzanfar K, Amoli MM. Haplotypes in vitamin D receptor gene encode risk in diabetic nephropathy. Gene 2018; 683:149-152. [PMID: 30315926 DOI: 10.1016/j.gene.2018.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Diabetic Nephropathy (DN) is one of the microvascular complications of diabetes and its early diagnosis can improve patient's quality of life. Genetic factors may increase the risk of DN development. This study aimed to evaluate the association of vitamin D receptor (VDR) gene polymorphisms and DN. METHOD A total of 313 Iranian participants including 104 diabetic patients with nephropathy (DN), 100 diabetic patients without nephropathy (D) and 109 healthy people (HC) were studied. The frequencies of rs7975232, rs731236 and rs4516035 variants of VDR gene were determined and compared between three groups. Estimated haplotype frequencies between polymorphisms in the cases and controls were also calculated. RESULTS No significant differences were identified for allele /genotype frequencies in HC, D and DN groups. However haplotype analysis showed that haplotype encompassing CCC alleles for rs7975232, rs731236 and rs4516035 variants, respectively was more frequent in DN subjects compared to HC (p-value = 0.01) and also, haplotype comprising TCC alleles was more frequent in DN group compared to both HC and D groups (p-value = 0.004 and 0.007, respectively). CONCLUSION Our study identified that CCC and TCC VDR haplotypes are risk factors for DN in patients with diabetes type 2.
Collapse
Affiliation(s)
- Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Arshadi Meshkani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fariba Zarrabi
- Thrombosis Hemostasis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Asgarbeik
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Razi F, Nasli-Esfahani E, Bandarian F. Association of serum uric acid with nephropathy in Iranian type 2 diabetic patients. J Diabetes Metab Disord 2018; 17:71-75. [PMID: 30288387 PMCID: PMC6154522 DOI: 10.1007/s40200-018-0340-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/16/2017] [Indexed: 12/14/2022]
Abstract
Background Diabetic nephropathy (DN) is the major cause of end-stage renal disease. Recent studies suggest that it is probable that uric acid is involved in the pathogenesis of diabetic nephropathy. This study aim was to investigate the association between serum uric acid and kidney function in Iranian patients with type 2 diabetes mellitus. Methods In this case-control study, a total of 201 diabetic patients with or without impaired kidney function (glomerular filtration rate/GFR < 60 and GFR ≥ 60) were selected. In both groups, serum fasting glucose (FBS), HbA1c, urea, creatinine, uric acid and lipid profile, urine albumin and GFR were measured and results were compared between the two groups. The results also categorized into three groups based on uric acid tertiles. Results Serum levels of uric acid, urea and creatinine as well as urine albumin/creatinine ratio (ACR) were significantly different between the two groups. GFR, creatinine and also urea were significantly different between uric acid tertiles (p < 0.05). Conclusions Serum uric acid is associated with decreased GFR as well as albuminuria and can be used as an indicator of DN.
Collapse
Affiliation(s)
- Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th floor, Diabetes Clinic, cross Heyat Ave, Shahrivar Ave., North Kargar St, Tehran, 1411715851 Iran
| | - Ensieh Nasli-Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th floor, Diabetes Clinic, cross Heyat Ave, Shahrivar Ave., North Kargar St, Tehran, 1411715851 Iran
| |
Collapse
|
19
|
Goli F, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, Rahimi R. Silymarin Attenuates ELMO-1 and KIM-1 Expression and Oxidative Stress in the Kidney of Rats with Type 2 Diabetes. Indian J Clin Biochem 2018; 34:172-179. [PMID: 31092990 DOI: 10.1007/s12291-018-0735-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 01/06/2023]
Abstract
Chronic diabetes mellitus is accompanied with overexpression of ELMO1 and KIM1 and enhanced oxidative stress. This study was aimed to evaluate the effects of administration of silymarin on oxidative stress markers and ELMO1 and KIM1 expression in the kidney tissue of type 2 diabetic rats. In this experimental study, 36 male Wistar rats were divided into 6 groups: Control, silymarin-treated control (60 and 120 mg/kg/day), diabetic, and silymarin-treated diabetic groups (60 and 120 mg/kg/day). Tissue levels of oxidative stress and biochemical parameters were measured by spectrophotometric methods. Lipid peroxidation levels in the kidney tissue were measured by fluorometric method. Insulin was determined using immunoassay. Gene expression analysis was determined by qPCR technique. The level of expression of ELMO1 and KIM1 in the diabetic groups treated with silymarin was significantly reduced (P < 0.001). Total antioxidant levels and thiol groups contents increased (P < 0.001) dramatically in treated groups. A significant decrease in tissue levels of malondialdehyde and total oxidant were observed in the silymarin treated diabetic rats (P < 0.001). The results showed that the urinary amount of protein in the treatment groups was significantly lower than of diabetic control (P < 0.001). These results indicate that silymarin has a blood glucose lowering effect and, due to its antioxidant properties, increases the antioxidant parameters and reduces the oxidant markers. The administration of silymarin has beneficial effects on kidney of diabetic rats with reduction of ELMO1 and KIM1expression.
Collapse
Affiliation(s)
- Fatemeh Goli
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinia
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- 2Departments of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Rahimeh Rahimi
- 1Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Razi F, Daneshpour MS, Karimoei M, Mehrabzadeh M, Bandarian F, Bahreini E, Qorbani M, Pasalar P. AGTR1 rs5186 variants in patients with type 2 diabetes mellitus and nephropathy. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Rasheed MA, Kantoush N, Abd El-Ghaffar N, Farouk H, Kamel S, Ibrahim AA, Shalaby A, Mahmoud E, Raslan HM, Saleh OM. Expression of JAZF1, ABCC8, KCNJ11and Notch2 genes and vitamin D receptor polymorphisms in type 2 diabetes, and their association with microvascular complications. Ther Adv Endocrinol Metab 2017; 8:97-108. [PMID: 28794851 PMCID: PMC5524251 DOI: 10.1177/2042018817708910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We studied JAZF1, ABCC8, KCNJ11and Notch2 gene expression and vitamin D receptor (VDR) polymorphisms (Fok1 and Bsm1) in patients with type 2 diabetes mellitus (T2DM) and tried to find out their association with microvascular complications in these patients. METHODS The study was conducted on 180 patients (93 complicated and 87 noncomplicated) and 150 healthy subjects. Reverse-transcriptase polymerase chain reaction (RT-PCR) was used to assess gene expression and real-time PCR was used to detect VDR genotypes. Serum vitamin D was assessed using Elisa technique. RESULTS After adjustment for age, sex, body mass index and glycated hemoglobin, altered Notch2 gene expression was found between patients and controls and between complicated and noncomplicated cases (p = 0.001 and 0.001, respectively) and ABCC8 gene expression showed significant difference between patients and controls only (p = 0.003), while JAZF1and KCNJ11 expression showed no significant difference between the studied groups (p = 0.3 and 0.4, respectively). Serum vitamin D level was decreased in patients compared with controls (p = 0.001), while no difference was detected between complicated and noncomplicated cases (p = 0.1). Our results revealed no significant difference in VDR Fok1 and Bsm1 genotype distributions (p = 0.7 and 0.1, respectively) and allele frequencies (p = 0.4 and 0.1, respectively) between patients and controls. Patients with complications showed increased frequencies of Fok1GG genotype and G allele, while patients without complications showed increased frequencies of AA, then AG Fok1 genotype and A allele (p = 0.001 and 0.001, respectively). In addition, the frequencies of CC Bsm1 genotype and C allele were significantly higher among patients with complications, while frequencies of TT Bsm1 genotype and T allele were significantly higher among patients without complications (p = 0.02 and 0.003, respectively). CONCLUSION Altered expression of Notch2 and ABCC8 genes may play a role in the pathogenesis of T2DM. Altered expression of Notch2 and VDR polymorphisms may play a role in the development of microvascular complications in diabetic patients. These results may assist in early identification and management of diabetic complications.
Collapse
Affiliation(s)
- Maha A. Rasheed
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Nagwa Kantoush
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Nagwa Abd El-Ghaffar
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Hebatallah Farouk
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Solaf Kamel
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | | | - Aliaa Shalaby
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Eman Mahmoud
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Hala M. Raslan
- Internal Medicine Department, National Research Centre, Cairo, Egypt
| | - Omneya M. Saleh
- Internal Medicine Department, National Research Centre, Cairo, Egypt
| |
Collapse
|