1
|
Thomas AL, Marsman J, Antony J, Schierding W, O’Sullivan JM, Horsfield JA. Transcriptional Regulation of RUNX1: An Informatics Analysis. Genes (Basel) 2021; 12:1175. [PMID: 34440349 PMCID: PMC8395016 DOI: 10.3390/genes12081175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Amarni L. Thomas
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
| | - Judith Marsman
- Department of Cardiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - William Schierding
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Justin M. O’Sullivan
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO17 1BJ, UK
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (A.L.T.); (J.A.)
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Genetics Otago Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|