1
|
Li J, Hong X, Jiang M, Kho AT, Tiwari A, Wang AL, Chase RP, Celedón JC, Weiss ST, McGeachie MJ, Tantisira KG. A novel piwi-interacting RNA associates with type 2-high asthma phenotypes. J Allergy Clin Immunol 2024; 153:695-704. [PMID: 38056635 DOI: 10.1016/j.jaci.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.
Collapse
Affiliation(s)
- Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Computational Health Informatics Program, Boston Children's Hospital, Boston, Mass
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pa
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Partners Personalized Medicine, Partners Healthcare, Boston, Mass
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatrics, Division of Respiratory Medicine, University of California-San Diego, La Jolla, Calif.
| |
Collapse
|
2
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
3
|
Deciphering the Molecular Mechanism of Incurable Muscle Disease by a Novel Method for the Interpretation of miRNA Dysregulation. Noncoding RNA 2022; 8:ncrna8040048. [PMID: 35893231 PMCID: PMC9326546 DOI: 10.3390/ncrna8040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well-established that microRNA dysregulation is a hallmark of human diseases, and that aberrant expression of miRNA is not randomly associated with human pathologies but plays a causal role in the pathological process. Investigations of the molecular mechanism that links miRNA dysregulation to pathophysiology can therefore further the understanding of human diseases. The biological effect of miRNA is thought to be mediated principally by miRNA target genes. Consequently, the target genes of dysregulated miRNA serve as a proxy for the biological interpretation of miRNA dysregulation, which is performed by target gene pathway enrichment analysis. However, this method unfortunately often fails to provide testable hypotheses concerning disease mechanisms. In this paper, we describe a method for the interpretation of miRNA dysregulation, which is based on miRNA host genes rather than target genes. Using this approach, we have recently identified the perturbations of lipid metabolism, and cholesterol in particular, in Duchenne muscular dystrophy (DMD). The host gene-based interpretation of miRNA dysregulation therefore represents an attractive alternative method for the biological interpretation of miRNA dysregulation.
Collapse
|
4
|
Peng Z, Duan Y, Zhong S, Chen J, Li J, He Z. RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification. BMC Nephrol 2022; 23:192. [PMID: 35597927 PMCID: PMC9123672 DOI: 10.1186/s12882-022-02823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hyperphosphatemia (HP) is associated with vascular calcification (VC) in chronic kidney disease (CKD). However, relationship between HP-induced-endothelial extracellular vesicles (HP-EC-EVs) and VC is unclear, and miR expression in HP-EC-EVs has not been determined. Methods We isolated HP-EC-EVs from endothelial cells with HP and observed that HP-EC-EVs were up-taken by vascular smooth muscle cells (VSMCs). HP-EC-EVs inducing calcium deposition was characterized by Alizarin Red S, colourimetric analysis and ALP activity. To investigate the mechanism of HP-EC-EVs-induced VSMC calcification, RNA-sequencing for HP-EC-EVs was performed. Results We first demonstrated that HP-EC-EVs induced VSMC calcification in vitro. RNA-seq analysis of HP-EC-EVs illustrated that one known miR (hsa-miR-3182) was statistically up-regulated and twelve miRs were significantly down-regulated, which was verified by qRT-PCR. We predicted 58,209 and 74,469 target genes for those down- and up-regulated miRs respectively through miRDB, miRWalk and miRanda databases. GO terms showed that down- and up-regulated targets were mostly enriched in calcium-dependent cell–cell adhesion via plama membrane cell-adhesion molecules (GO:0,016,338, BP) and cell adhesion (GO:0,007,155, BP), plasma membrane (GO:0,005,886, CC), and metal ion binding (GO:0,046,914, MF) and ATP binding (GO:0,005,524, MF) respectively. Top-20 pathways by KEGG analysis included calcium signaling pathway, cAMP signaling pathway, and ABC transporters, which were closely related to VC. Conclusion Our results indicated that those significantly altered miRs, which were packaged in HP-EC-EVs, may play an important role in VC by regulating related pathways. It may provide novel insight into the mechanism of CKD calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02823-6.
Collapse
Affiliation(s)
- Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingjie Duan
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuzhu Zhong
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230002, China
| | - Jianlong Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Li N, Gu HF. Genetic and Biological Effects of SLC12A3, a Sodium-Chloride Cotransporter, in Gitelman Syndrome and Diabetic Kidney Disease. Front Genet 2022; 13:799224. [PMID: 35591852 PMCID: PMC9111839 DOI: 10.3389/fgene.2022.799224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The SLC12A3 (Solute carrier family 12 member 3) gene encodes a sodium-chloride cotransporter and mediates Na+ and Cl− reabsorption in the distal convoluted tubule of kidneys. An experimental study has previously showed that with knockdown of zebrafish ortholog, slc12a3 led to structural abnormality of kidney pronephric distal duct at 1-cell stage, suggesting that SLC12A3 may have genetic effects in renal disorders. Many clinical reports have demonstrated that the function-loss mutations in the SLC12A3 gene, mainly including Thr60Met, Asp486Asn, Gly741Arg, Leu859Pro, Arg861Cys, Arg913Gln, Arg928Cys and Cys994Tyr, play the pathogenic effects in Gitelman syndrome. This kidney disease is inherited as an autosomal recessive trait. In addition, several population genetic association studies have indicated that the single nucleotide variant Arg913Gln in the SLC12A3 gene is associated with diabetic kidney disease in type 2 diabetes subjects. In this review, we first summarized bioinformatics of the SLC12A3 gene and its genetic variation. We then described the different genetic and biological effects of SLC12A3 in Gitelman syndrome and diabetic kidney disease. We also discussed about further genetic and biological analyses of SLC12A3 as pharmacokinetic targets of diuretics.
Collapse
Affiliation(s)
- Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Harvest F. Gu,
| |
Collapse
|
6
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. Relationships between Indicators of Lower Extremity Artery Disease and miRNA Expression in Peripheral Blood Mononuclear Cells. J Clin Med 2022; 11:1619. [PMID: 35329950 PMCID: PMC8948757 DOI: 10.3390/jcm11061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD) is an underdiagnosed and globally underestimated vascular disease caused by the progressive and chronic formation of atherosclerotic plaques in the arteries of the lower limbs. Much evidence indicates that the abnormal course of pathophysiological processes underlying LEAD development is associated with altered miRNA modulatory function. In the presented study, relationships between miRNA expression and clinical indicators of this disease (ABI, claudication distance, length of arterial occlusion, Rutherford category, and plaque localization) were identified. MiRNA expression profiles were obtained using next-generation sequencing in peripheral blood mononuclear cells (PBMCs) of 40 LEAD patients. Correlation analysis performed using the Spearman rank correlation test revealed miRNAs related to ABI, claudication distance, and length of arterial occlusion. In the DESeq2 analysis, five miRNAs were found to be dysregulated in patients with Rutherford category 3 compared to patients with Rutherford category 2. No miRNAs were found to be differentially expressed between patients with different plaque localizations. Functional analysis performed using the miRNet 2.0 website tool determined associations of selected miRNAs with processes underlying vascular pathology, such as vascular smooth muscle cell differentiation, endothelial cell apoptosis, response to hypoxia, inflammation, lipid metabolism, and circadian rhythm. The most enriched functional terms for genes targeted by associated miRNAs were linked to regulation of the cell cycle, regulation of the transcription process, and nuclear cellular compartment. In conclusion, dysregulations of miRNA expression in PBMCs of patients with LEAD are indicative of the disease and could potentially be used in the prediction of LEAD progression.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
7
|
Karimkhanloo H, Mohammadi-Yeganeh S, Hadavi R, Koochaki A, Paryan M. Potential role of miR-214 in β-catenin gene expression within hepatocellular carcinoma. Mol Biol Rep 2020; 47:7429-7437. [PMID: 32901357 DOI: 10.1007/s11033-020-05798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are important gene regulators whose dysregulations can be involved in tumorigenesis. β-catenin, the main agent in the Wnt/β-catenin pathway, controls various genes and its over-expression has been discovered in different kinds of cancers including Hepatocellular Carcinoma (HCC). Extensive research demonstrated that the Wnt signaling is one of the major affected pathways in HCC. This study aimed to find miRNA targeting β-catenin gene by bioinformatic approaches and confirm this correlation to propose new therapeutic targets for HCC. Prediction of miRNAs targeting 3'-Untranslated Regions (UTR) of β-catenin mRNA, were done using different types of credible bioinformatic databases. The luciferase assay was also recruited for further confirmation of the bioinformatic predictions. In the first step, the expression of β-catenin was assessed in the HepG2 cell line by real-time PCR technique. Next, transduction of HepG2 cells were done by lentiviral vectors containing the desired miRNA. Then, the expression level of miRNA and the β-catenin gene were evaluated. Based on the results obtained from different bioinformatic databases, miR-214 was selected as the potential miRNA with the highest probability in targeting β-catenin. Furthermore, Luciferase assay results confirmed the accuracy of our bioinformatic prediction. In line with our hypothesis, after the overexpression of miR-214 in HepG2 cells, β-catenin gene expression was reduced significantly. Gathered results indicate the miRNAs role in the down-regulation of their target genes. Hence, the results propose that miR-214 can prevent HCC development by suppressing β-catenin and may supply a newfound approach towards HCC therapy in humans.
Collapse
Affiliation(s)
- Hamzeh Karimkhanloo
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Biomedical Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Razie Hadavi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|