1
|
Friedman JM, Bombard Y, Carleton B, Issa AM, Knoppers B, Plon SE, Rahimzadeh V, Relling MV, Williams MS, van Karnebeek C, Vears D, Cornel MC. Should secondary pharmacogenomic variants be actively screened and reported when diagnostic genome-wide sequencing is performed in a child? Genet Med 2024; 26:101033. [PMID: 38007624 DOI: 10.1016/j.gim.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yvonne Bombard
- Genomics Health Services Research Program, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Carleton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Amalia M Issa
- Personalized Precision Medicine & Targeted Therapeutics, Springfield, MA; Health Policy, University of the Sciences, Philadelphia, PA; Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA; Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Bartha Knoppers
- Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sharon E Plon
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Clara van Karnebeek
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands; United for Metabolic Diseases, The Netherlands; Radboud Center for Mitochondrial and Metabolic Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danya Vears
- University of Melbourne, Carlton, Melbourne, Australia; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martina C Cornel
- Department of Human Genetics and Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
2
|
White LK, Crowley TB, Finucane B, McClellan EJ, Donoghue S, Garcia-Minaur S, Repetto GM, Fischer M, Jacquemont S, Gur RE, Maillard AM, Donald KA, Bassett AS, Swillen A, McDonald-McGinn DM. Gathering the Stakeholder's Perspective: Experiences and Opportunities in Rare Genetic Disease Research. Genes (Basel) 2023; 14:169. [PMID: 36672911 PMCID: PMC9859499 DOI: 10.3390/genes14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Research participant feedback is rarely collected; therefore, investigators have limited understanding regarding stakeholders' (affected individuals/caregivers) motivation to participate. Members of the Genes to Mental Health Network (G2MH) surveyed stakeholders affected by copy number variants (CNVs) regarding perceived incentives for study participation, opinions concerning research priorities, and the necessity for future funding. Respondents were also asked about feelings of preparedness, research burden, and satisfaction with research study participation. METHODS Modified validated surveys were used to assess stakeholders´ views across three domains: (1) Research Study Enrollment, Retainment, Withdrawal, and Future Participation; (2) Overall Research Experience, Burden, and Preparedness; (3) Research Priorities and Obstacles. Top box score analyses were performed. RESULTS A total of 704 stakeholders´ responded from 29 countries representing 55 CNVs. The top reasons for initial participation in the research included reasons related to education and altruism. The top reasons for leaving a research study included treatment risks and side effects. The importance of sharing research findings and laboratory results with stakeholders was underscored by participants. Most stakeholders reported positive research experiences. CONCLUSIONS This study provides important insight into how individuals and families affected with a rare CNV feel toward research participation and their overall experience in rare disease research. There are clear targets for areas of improvement for study teams, although many stakeholders reported positive research experiences. Key findings from this international survey may help advance collaborative research and improve the experience of participants, investigators, and other stakeholders moving forward.
Collapse
Affiliation(s)
- Lauren K. White
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Emily J. McClellan
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Donoghue
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sixto Garcia-Minaur
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, 28046 Madrid, Spain
| | | | - Matthias Fischer
- Clinic and Policlinic for Psychiatry and Psychotherapy, University of Rostock, 18147 Rostock, Germany
- Sigma-Zentrum, 79713 Bad Säckingen, Germany
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Raquel E. Gur
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town 7700, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | - Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON M5S 2S1, Canada
- Division of Cardiology, Department of Medicine, and Centre for Mental Health, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Ann Swillen
- Center for Human Genetics, University Hospital UZ Leuven, and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Donna M. McDonald-McGinn
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185 Roma, Italy
| |
Collapse
|
3
|
Habibey R, Striebel J, Schmieder F, Czarske J, Busskamp V. Long-term morphological and functional dynamics of human stem cell-derived neuronal networks on high-density micro-electrode arrays. Front Neurosci 2022; 16:951964. [PMID: 36267241 PMCID: PMC9578684 DOI: 10.3389/fnins.2022.951964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150–600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Johannes Striebel
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- School of Science, Institute of Applied Physics, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
- *Correspondence: Volker Busskamp,
| |
Collapse
|
4
|
Perera B, Steward C, Courtenay K, Andrews T, Shankar R. Pharmacogenomics: an opportunity for personalised psychotropic prescribing in adults with intellectual disabilities. BJPsych Open 2022; 8:e157. [PMID: 35975635 PMCID: PMC9438475 DOI: 10.1192/bjo.2022.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
There is growing evidence for the use of pharmacogenomics in psychotropic prescribing. People with intellectual disabilities are disproportionately prescribed psychotropics and are at risk of polypharmacy. There is an urgent need for safeguards to prevent psychotropic overprescribing but it is equally crucial that this population is not left behind in such exciting initiatives. Understanding how genetic variations affect medications is a step towards personalised medicine. This may improve personalised prescribing for people with intellectual disabilities, especially given the high rate of psychiatric and behavioural problems in this population. Our editorial explores opportunities and challenges that pharmacogenomics offers for the challenges of polypharmacy and overprescribing of psychotropics in people with intellectual disabilities.
Collapse
Affiliation(s)
- Bhathika Perera
- Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | | | - Ken Courtenay
- Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | | | - Rohit Shankar
- Peninsula School of Medicine, University of Plymouth, UK; and Cornwall Partnership NHS Foundation Trust, Truro, UK
| |
Collapse
|