1
|
Guizetti J. Imaging malaria parasites across scales and time. J Microsc 2025. [PMID: 39749880 DOI: 10.1111/jmi.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules. This review explores the expansive field of light microscopy, focusing on its application to malaria research. Imaging technologies have transformed our understanding of biological systems, yet navigating the complex and ever-growing landscape of techniques can be daunting. This review offers a guide for researchers, especially those working on malaria, by providing historical context as well as practical advice on selecting the right imaging approach. The review advocates an integrated methodology that prioritises the research question while considering key factors like sample preparation, fluorophore choice, imaging modality, and data analysis. In addition to presenting seminal studies and innovative applications of microscopy, the review highlights a broad range of topics, from traditional techniques like white light microscopy to advanced methods such as superresolution microscopy and time-lapse imaging. It addresses the emerging challenges of microscopy, including phototoxicity and trade-offs in resolution and speed, and offers insights into future technologies that might impact malaria research. This review offers a mix of historical perspective, technological progress, and practical guidance that appeal to novice and advanced microscopists alike. It aims to inspire malaria researchers to explore imaging techniques that could enrich their studies, thus advancing the field through enhanced visual exploration of the parasite across scales and time.
Collapse
Affiliation(s)
- Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
3
|
Assis FFVD, Almeida Junior JSD, Moraes TMP, Varotti FDP, Moraes CC, Sartoratto A, Moraes WP, Minervino AHH. Antiplasmodial Activity of Hydroalcoholic Extract from Jucá ( Libidibia ferrea) Pods. Pharmaceutics 2023; 15:pharmaceutics15041162. [PMID: 37111647 PMCID: PMC10145024 DOI: 10.3390/pharmaceutics15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Malaria is an infectious and parasitic disease caused by protozoa of the genus Plasmodium, which affects millions of people in tropical and subtropical areas. Recently, there have been multiple reports of drug resistance in Plasmodium populations, leading to the search for potential new active compounds against the parasite. Thus, we aimed to evaluate the in vitro antiplasmodial activity and cytotoxicity of the hydroalcoholic extract of Jucá (Libidibia ferrea) in serial concentrations. Jucá was used in the form of a freeze-dried hydroalcoholic extract. For the cytotoxicity assay, the(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method with the WI-26VA4 human cell line was used. For the antiplasmodial activity, Plasmodium falciparum synchronized cultures were treated with serial concentrations (0.2 to 50 μg/mL) of the Jucá extract. In terms of the chemical composition of the Jucá extract, gas chromatography coupled to mass spectrometry measurements revealed the main compounds as ellagic acid, valoneic acid dilactone, gallotannin, and gallic acid. The Jucá hydroalcoholic extract did not show cytotoxic activity per MTT, with an IC50 value greater than 100 µg/mL. Regarding the antiplasmodial activity, the Jucá extract presented an IC50 of 11.10 µg/mL with a selective index of nine. Because of its antiplasmodial activity at the tested concentrations and low toxicity, the Jucá extract is presented as a candidate for herbal medicine in the treatment of malaria. To the best of our knowledge, this is the first report of antiplasmodial activity in Jucá.
Collapse
Affiliation(s)
| | - José Sousa de Almeida Junior
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro-Oeste, Av. Sebastião G. Coelho, 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Camila Castilho Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade de Campinas-UNICAMP, Campinas 13148-218, Brazil
| | - Waldiney Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | | |
Collapse
|
4
|
Pandey SK, Anand U, Siddiqui WA, Tripathi R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv Med 2023; 2023:5060665. [PMID: 36960081 PMCID: PMC10030226 DOI: 10.1155/2023/5060665] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Malaria continued to be a deadly situation for the people of tropical and subtropical countries. Although there has been a marked reduction in new cases as well as mortality and morbidity rates in the last two decades, the reporting of malaria caused 247 million cases and 619000 deaths worldwide in 2021, according to the WHO (2022). The development of drug resistance and declining efficacy against most of the antimalarial drugs/combination in current clinical practice is a big challenge for the scientific community, and in the absence of an effective vaccine, the problem becomes worse. Experts from various research organizations worldwide are continuously working hard to stop this disaster by employing several strategies for the development of new antimalarial drugs/combinations. The current review focuses on the history of antimalarial drug discovery and the advantages, loopholes, and opportunities associated with the common strategies being followed for antimalarial drug development.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- 1Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uttpal Anand
- 2Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Waseem A. Siddiqui
- 3Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Renu Tripathi
- 4Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
5
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
6
|
Gupta Y, Sharma N, Singh S, Romero JG, Rajendran V, Mogire RM, Kashif M, Beach J, Jeske W, Poonam, Ogutu BR, Kanzok SM, Akala HM, Legac J, Rosenthal PJ, Rademacher DJ, Durvasula R, Singh AP, Rathi B, Kempaiah P. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca 2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022; 14:1371. [PMID: 35890267 PMCID: PMC9319510 DOI: 10.3390/pharmaceutics14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Malaria elimination urgently needs novel antimalarial therapies that transcend resistance, toxicity, and high costs. Our multicentric international collaborative team focuses on developing multistage antimalarials that exhibit novel mechanisms of action. Here, we describe the design, synthesis, and evaluation of a novel multistage antimalarial compound, 'Calxinin'. A compound that consists of hydroxyethylamine (HEA) and trifluoromethyl-benzyl-piperazine. Calxinin exhibits potent inhibitory activity in the nanomolar range against the asexual blood stages of drug-sensitive (3D7), multidrug-resistant (Dd2), artemisinin-resistant (IPC4912), and fresh Kenyan field isolated Plasmodium falciparum strains. Calxinin treatment resulted in diminished maturation of parasite sexual precursor cells (gametocytes) accompanied by distorted parasite morphology. Further, in vitro liver-stage testing with a mouse model showed reduced parasite load at an IC50 of 79 nM. A single dose (10 mg/kg) of Calxinin resulted in a 30% reduction in parasitemia in mice infected with a chloroquine-resistant strain of the rodent parasite P. berghei. The ex vivo ookinete inhibitory concentration within mosquito gut IC50 was 150 nM. Cellular in vitro toxicity assays in the primary and immortalized human cell lines did not show cytotoxicity. A computational protein target identification pipeline identified a putative P. falciparum membrane protein (Pf3D7_1313500) involved in parasite calcium (Ca2+) homeostasis as a potential Calxinin target. This highly conserved protein is related to the family of transient receptor potential cation channels (TRP-ML). Target validation experiments showed that exposure of parasitized RBCs (pRBCs) to Calxinin induces a rapid release of intracellular Ca2+ from pRBCs; leaving de-calcinated parasites trapped in RBCs. Overall, we demonstrated that Calxinin is a promising antimalarial lead compound with a novel mechanism of action and with potential therapeutic, prophylactic, and transmission-blocking properties against parasites resistant to current antimalarials.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Jesus G. Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- School of Biology, Institute of Experimental Biology, Central University of Venezuela, Caracas 1040, Venezuela
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Reagan M. Mogire
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Jordan Beach
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Walter Jeske
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, New Delhi 110021, India;
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Bernhards R. Ogutu
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Hoseah M. Akala
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - David J. Rademacher
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Prakasha Kempaiah
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| |
Collapse
|
7
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
8
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
9
|
Nordmann T, Borrmann S, Ramharter M. Drug-induced hypersensitivity to artemisinin-based therapies for malaria. Trends Parasitol 2021; 38:136-146. [PMID: 34561157 DOI: 10.1016/j.pt.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
In the early 2000s, artemisinin-based combination therapy (ACT) was introduced as first-line treatment for uncomplicated Plasmodium falciparum malaria in virtually all endemic countries. However, despite the well-known excellent tolerability of ACTs, hypersensitivity to artemisinin derivatives remains a repeatedly documented adverse drug reaction of still unknown frequency. The clinical features of an artemisinin-induced hypersensitivity reaction range from mild to life-threatening severity, and a significant number of cases may pass unnoticed. In this review, we discuss the medical importance of hypersensitivity to artemisinin derivatives and we review data on the presumed frequency and its potential underlying mechanisms. Furthermore, we advocate to make alternative non-artemisinin-based drugs available for patients who do not tolerate artemisinin derivatives and to continue investing in the development of novel non-artemisinin-based combination regimens.
Collapse
Affiliation(s)
- Tamara Nordmann
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Steffen Borrmann
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany; Centre de Recherches Médicale de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany; Centre de Recherches Médicale de Lambaréné (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
10
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Chen J, Wang J, Deng Y, Li B, Li C, Lin Y, Yang D, Zhang H, Chen L, Wang T. Novel cyclometalated Ru(II) complexes containing isoquinoline ligands: Synthesis, characterization, cellular uptake and in vitro cytotoxicity. Eur J Med Chem 2020; 203:112562. [PMID: 32698112 DOI: 10.1016/j.ejmech.2020.112562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 01/25/2023]
Abstract
Two novel cyclometalated Ru(II) complexes containing isoquinoline ligand, [Ru(bpy)2(1-Ph-IQ)](PF6), (bpy = 2,2'-bipyridine; 1-Ph-IQ = 1-phenylisoquinoline; RuIQ-1) and [Ru(phen)2(1-Ph-IQ)](PF6) (phen = 1,10-phenanthroline; RuIQ-2) were found to show high cytotoxic activity against NCI-H460, A549, HeLa and MCF-7 cell lines. Notably, both of them exhibited IC50 values that were an order of magnitude lower than those of clinical cisplatin and two structurally similar Ru(II)-isoquinoline complexes [Ru(bpy)2(1-Py-IQ)](PF6)2 (Ru3) and [Ru(phen)2(1-Py-IQ)](PF6)2 (Ru4) (1-Py-IQ = 1-pyridine-2-yl). The cellular uptake and intracellular localization displayed that the two cyclometalated Ru(II) complexes entered NCI-H460 cancer cells dominantly via endocytosis pathway, and preferentially distributed in the nucleus. Further investigations on the apoptosis-inducing mechanisms of RuIQ-1 and RuIQ-2 revealed that the two complexes could cause S, G2/M double-cycle arrest by regulating cell cycle related proteins. The two complexes also could reduce the mitochondrial membrane potential (MMP), promote the generation of intracellular ROS and trigger DNA damage, and then lead to apoptosis-mediated cell death. More importantly, RuIQ-2 exhibits low toxicity both towards normal HBE cells in vitro and zebrafish embryos in vivo. Accordingly, the developed complexes hold great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.
Collapse
Affiliation(s)
- Jincan Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jie Wang
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuanyuan Deng
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baojun Li
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengpeng Li
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuxue Lin
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Dongbin Yang
- The Affiliated People's Hospital of Hebi of Henan University, Hebi, 456030, China
| | - Huanyun Zhang
- The Affiliated People's Hospital of Hebi of Henan University, Hebi, 456030, China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, Marine Biomedical Research Institute, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Tao Wang
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, 450001, China; Centre for Comparative Genomics, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
12
|
Aguiar L, Machado M, Sanches-Vaz M, Prudêncio M, Vale N, Gomes P. Coupling the cell-penetrating peptides transportan and transportan 10 to primaquine enhances its activity against liver-stage malaria parasites. MEDCHEMCOMM 2019; 10:221-226. [PMID: 30881610 PMCID: PMC6390471 DOI: 10.1039/c8md00447a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/13/2018] [Indexed: 01/30/2023]
Abstract
Novel primaquine-cell penetrating peptide conjugates were synthesised and tested in vitro against liver stage Plasmodium berghei parasites. Generally, the conjugates were more active than the parent peptides and, in some cases, than the parent drug. These are unprecedented findings that may open a new route towards antimalarial drug rescuing.
Collapse
Affiliation(s)
- Luísa Aguiar
- LAQV-REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre 687 , P-4169-007 Porto , Portugal .
| | - Marta Machado
- Instituto de Medicina Molecular João Lobo Antunes , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , P-1648-028 Lisboa , Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , P-1648-028 Lisboa , Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , P-1648-028 Lisboa , Portugal
| | - Nuno Vale
- Laboratório de Farmacologia , Departamento de Ciências do Medicamento , Faculdade de Farmácia , Universidade do Porto , Rua de Jorge Viterbo Ferreira 228 , P-4050-313 Porto , Portugal
- Ipatimup/Instituto de Investigação e Inovação em Saúde (i3S) , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Paula Gomes
- LAQV-REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre 687 , P-4169-007 Porto , Portugal .
| |
Collapse
|
13
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
14
|
Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy. Cancer Lett 2018; 421:73-81. [PMID: 29458142 DOI: 10.1016/j.canlet.2018.02.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
Radiofrequency ablation (RFA) is considered to be a potentially curative therapy for hepatocellular carcinoma (HCC). However, insufficient RFA (IRFA) can promote rapid progression of the residual tumor. The mechanisms underlying IRFA-induced tumor promotion remain poorly understood. In the present study, we have established a subcutaneous xenograft mouse model and monitored the location and extent of IRFA by dual monitoring with ultrasonography and a thermal imager. For the first time, we provide evidence of the activation of autophagic pathways in mice exposed to IRFA. We show that autophagy plays an important role in relapse and proliferation after IRFA and that hydroxychloroquine (HCQ) can suppress these effects. Our findings indicate that autophagy is involved in experimental IRFA and that inhibition of autophagy may be a novel approach in the treatment of local recurrences of HCC after IRFA in the clinic.
Collapse
|
15
|
Nsanzabana C, Djalle D, Guérin PJ, Ménard D, González IJ. Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape. Malar J 2018; 17:75. [PMID: 29422048 PMCID: PMC5806256 DOI: 10.1186/s12936-018-2185-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to detect and track in real-time its emergence and spread need to be strengthened or in some places established. Currently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, standardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organization has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The Worldwide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and networking activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening of national reference laboratories in malaria-endemic countries through standardized protocols and training plus the availability of a proficiency testing programme, would contribute to the improvement and sustainability of anti-malarial resistance surveillance networks worldwide.
Collapse
Affiliation(s)
| | - Djibrine Djalle
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Didier Ménard
- Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | - Iveth J González
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
16
|
Zeleke G, Kebebe D, Mulisa E, Gashe F. In Vivo Antimalarial Activity of the Solvent Fractions of Fruit Rind and Root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in Mice. J Parasitol Res 2017; 2017:3121050. [PMID: 29391947 PMCID: PMC5748150 DOI: 10.1155/2017/3121050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Currently, antimalarial drug resistance poses a serious challenge. This stresses the need for newer antimalarial compounds. Carica papaya is used traditionally and showed in vitro antimalarial activity. This study attempted to evaluate in vivo antimalarial activity of C. papaya in mice. METHODS In vivo antimalarial activity of solvent fractions of the plant was carried out against early P. berghei infection in mice. Parasitemia, temperature, PCV, and body weight of mice were recorded. Windows SPSS version 16 (one-way ANOVA followed by Tukey's post hoc test) was used for data analysis. RESULTS The pet ether and chloroform fractions of C. papaya fruit rind and root produced a significant (p < 0.001) chemosuppressive effect. A maximum parasite suppression of 61.78% was produced by pet ether fraction of C. papaya fruit rind in the highest dose (400 mg/kg/day). Only 400 mg/kg/day dose of chloroform fraction of C. papaya root exhibited a parasite suppression effect (48.11%). But, methanol fraction of the plant parts produced less chemosuppressive effect. CONCLUSION Pet ether fraction of C. papaya fruit rind had the highest antimalarial activity and could be a potential source of lead compound. Further study should be done to show the chemical and metabolomic profile of active ingredients.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Pharmacology Course Team, School of Pharmacy, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Dereje Kebebe
- Pharmaceutics Course Team, School of Pharmacy, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Eshetu Mulisa
- Pharmacology Course Team, School of Pharmacy, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Fanta Gashe
- Pharmaceutics Course Team, School of Pharmacy, Jimma University, P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
17
|
Abstract
Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling this knowledge gap cannot be accomplished by mining recent whole-genome sequencing data because apicomplexan cell cycles differ substantially and lack many of the key regulatory factors of well-studied yeast and mammalian cell division models. We have utilized forward genetics to discover essential factors that regulate cell division in these parasites using the Toxoplasma gondii model. An example of this approach is described here with the discovery of a putative E3 ligase/protein kinase mechanism involved in regulating chromosome replication and mitotic processes of asexual stage parasites.
Collapse
|