1
|
Khodabandeh Z, Alaee S, Samare-Najaf M, Hosseini E, Dara M, Shokri S, Shirazi R. Taurine alleviated acrylamide-induced ovarian toxicity via suppression of oxidative stress and apoptosis in mice. Toxicol Ind Health 2025:7482337251335541. [PMID: 40250412 DOI: 10.1177/07482337251335541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Acrylamide (Acr) poses reproductive toxicity risks to humans due to its ability to penetrate cell membranes and disrupt cellular balance. Taurine (Tau), a sulfur-containing amino acid with cell membrane stabilization and antioxidant properties, may mitigate these effects. This study examined how Tau can protect against oxidative stress and apoptosis induced by Acr in mouse ovarian tissue. Forty adult healthy mice, aged 6-8 weeks, were randomly assigned to four groups including the controls (received normal saline orally), Acr (50 mg/kg/day Acr orally), Acr + Tau75 (Acr and 75 mg/kg/day Tau), and Acr + Tau150 (Acr and 150 mg/kg/day Tau). Treatments were administered for 35 days, followed by assessments of stress markers and apoptosis via immunofluorescence and TUNEL assays. Both doses of Tau significantly increased the gene and protein expression levels of stress response enzymes, including Gpx1, Sod1, and Cat. Moreover, Tau significantly decreased the gene expression levels of apoptotic markers Caspase3 and Bax, while upregulating the antiapoptotic gene Bcl2l2. The TUNEL assay revealed the preventive properties of Tau against Acr-induced apoptosis in the ovaries. The current findings suggest the promising properties of Tau in the prevention of Acr-induced oxidative stress and apoptosis in mouse ovarian tissue. Therefore, Tau could play a protective role against Acr-induced reproductive toxicity in females, meriting further research into its potential applications.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Shokri
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Reza Shirazi
- Department of Anatomy, School of Biomedical Sciences, Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Hassan RM, Elzayat EM, Eid JI, Abdelgayed SS, Hosney M. Protective effects of Moringa oleifera leaf extract against cyclophosphamide-induced ovarian dysfunction and follicular loss in rats. Tissue Cell 2025; 95:102916. [PMID: 40233669 DOI: 10.1016/j.tice.2025.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
The current study aims to determine whether Moringa oleifera (M. oleifera) leaf extract can reverse cyclophosphamide (CP)-induced ovarian dysfunction and follicle loss in rats, potentially through antioxidant or anti-inflammatory pathways. Female rats were divided into four experimental groups: (1) negative control (administrated distilled water), (2) premature ovarian failure (POF) model group (induced by a single intraperitoneal dose of CP), (3) M. Oleifera extract alone, and (4) M. oleifera + CP. CP induced multiple effects on the ovaries, including hormonal imbalances (increased FSH and decreased E2 levels), oxidative stress (elevated serum MDA and NO levels), altered gene expression (upregulated TNF-α and downregulated TGF-β), and histological changes (follicular atresia and stromal hyperplasia). Pretreatment with M. oleifera successfully mitigated CP-induced oxidative and inflammatory changes, as well as ovarian tissue damage, but failed to reverse serum hormonal imbalances. These findings demonstrate the protective potential of M. oleifera leaf extract against CP-induced ovarian toxicity, likely mediated by the synergistic antioxidant, anti-inflammatory, and organ-protective properties of its bioactive components.
Collapse
Affiliation(s)
- Rehab Mohamed Hassan
- Department of Biotechnology, Faculty of Biotechnology, MUST University, Giza, Egypt
| | - Emad M Elzayat
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sherein S Abdelgayed
- Pathobiology Department, College of Veterinary Medicine, Tuskegee University, AL36088, USA; Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Salian SR, Daddangadi A, Predheepan D, Bhagat Amonkar DD, Pandya RK, Laxminarayana SLK, Uppangala S, Kalthur G, Anderson RA, Adiga SK. Comparison of large single and small multiple doses of cyclophosphamide exposure in mice during early prepubertal age on fertility outcome. Sci Rep 2024; 14:31042. [PMID: 39730849 DOI: 10.1038/s41598-024-82264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Cyclophosphamide (CY) exposure is known to affect the ovary and impair fertility. Clinically, treatment is generally given over multiple doses, but research models have generally used single doses. The relative effects of administering multiple small doses of CY in the prepubertal period are not elucidated. Two-week-old early-prepubertal Swiss albino female mice were administered with either large single (200 mg/Kg x 1; CY200X1) or small multiple (75 mg/Kg x 4; CY75X4) CY doses, thus a 50% higher total dose. Surviving females were assessed for estrous cyclicity, ovarian follicle reserve, oocyte functional competence, and postnatal assessment of first-generation (F1) pups. Exposure to CY75X4 reduced the loss of ovarian follicles (p < 0.05), and body weight (p < 0.001), and resulted in a larger population of cycling females (p < 0.01) with higher oocyte yield (p < 0.05) compared to CY200X1. Although CY200X1 exposed cycling females had comparable oocyte quality, and fertility index, the postnatal mortality was higher in F1 pups (p < 0.05) in comparison to the CY75X4 group. Although both strategies affect oocyte quality and functional competence similarly, CY75X4, despite the higher overall dose, results in reduced follicle loss, produces higher oocyte/blastocyst yield, and exhibits lower postnatal mortality rates, suggesting a potential advantage over CY200X1 for later fertility and offspring health. The differences in effects of the two treatment models show the need for designing animal model studies that more closely mimic the clinical administration of gonadotoxic therapies such as cyclophosphamide.
Collapse
Affiliation(s)
- Sujith Raj Salian
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Akshatha Daddangadi
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Dhakshanya Predheepan
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Divya Deeleep Bhagat Amonkar
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Riddhi Kirit Pandya
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India
| | | | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, India
| | | | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
4
|
Longobardi S, Klinger FG, Zheng W, Campitiello MR, D’Hooghe T, La Marca A. Gonadotropin Activity during Early Folliculogenesis and Implications for Polycystic Ovarian Syndrome and Premature Ovarian Insufficiency: A Narrative Review. Int J Mol Sci 2024; 25:7520. [PMID: 39062762 PMCID: PMC11277126 DOI: 10.3390/ijms25147520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Female fertility depends on the ovarian reserve of follicles, which is determined at birth. Primordial follicle development and oocyte maturation are regulated by multiple factors and pathways and classified into gonadotropin-independent and gonadotropin-dependent phases, according to the response to gonadotropins. Folliculogenesis has always been considered to be gonadotropin-dependent only from the antral stage, but evidence from the literature highlights the role of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) during early folliculogenesis with a potential role in the progression of the pool of primordial follicles. Hormonal and molecular pathway alterations during the very earliest stages of folliculogenesis may be the root cause of anovulation in polycystic ovary syndrome (PCOS) and in PCOS-like phenotypes related to antiepileptic treatment. Excessive induction of primordial follicle activation can also lead to premature ovarian insufficiency (POI), a condition characterized by menopause in women before 40 years of age. Future treatments aiming to suppress initial recruitment or prevent the growth of resting follicles could help in prolonging female fertility, especially in women with PCOS or POI. This review will briefly introduce the impact of gonadotropins on early folliculogenesis. We will discuss the influence of LH on ovarian reserve and its potential role in PCOS and POI infertility.
Collapse
Affiliation(s)
| | - Francesca Gioia Klinger
- Department of Histology and Embryology, University of Health Sciences, Saint Camillus International, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Thomas D’Hooghe
- Merck KGaA, 64293 Darmstadt, Germany (T.D.)
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Antonio La Marca
- Department of Maternal-Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Shams E, Zohrabi D, Omrani O, Zarezade V, Yazdanpanahi N, Sanati MH. Investigation of crocin's protective effect on cyclophosphamide-induced hypothalamic-pituitary-gonadal axis defects in adult female rats. Women Health 2024; 64:32-40. [PMID: 38014433 DOI: 10.1080/03630242.2023.2286264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Cyclophosphamide is a drug used in chemotherapy. However, it has side effects, including changes in reproductive system functioning. Some herbal compounds can reduce the harmful effects of cyclophosphamide. This study aims to investigate the protective role of crocin against changes caused by Cyclophosphamide in ovarian tissue through changes in the expression of genes involved in the hypothalamic-pituitary-gonadal axis. This experimental study was performed on 24 adult female Wistar rats. Mice were divided into four groups (normal saline, 30 mg/kg cyclophosphamide, 100 mg/kg crocin and 30 mg/kg cyclophosphamide, and 200 mg/kg crocin and 30 mg/kg cyclophosphamide). At the end of the treatment period, the hypothalamus and ovaries were also removed to evaluate ob-Rb, ob-Ra, and NPY genes expression using real-time PCR and histological changes in the ovaries. Data were analyzed by SPSS statistical software. The expression of genes, number of follicles, and follicle diameter significantly decreased in the cyclophosphamide-treated groups compared with the control group. In the crocin and cyclophosphamide-treated groups, drug-induced reproductive complications were mitigated. The current findings indicate that by increasing the expression of genes ob-Rb, ob-Ra, and NPY, crocin could modulate the harmful effects of cyclophosphamide.
Collapse
Affiliation(s)
- Elaheh Shams
- Department of Clinical Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Dina Zohrabi
- Department of Biology, Higher Education Institute, Meymeh, Iran
| | - Ozra Omrani
- Department of Biology, Higher Education Institute, Meymeh, Iran
| | - Vahid Zarezade
- Department of Clinical Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biotechnology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
7
|
Alesi LR, Nguyen QN, Stringer JM, Winship AL, Hutt KJ. The future of fertility preservation for women treated with chemotherapy. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0123. [PMID: 37068157 PMCID: PMC10235927 DOI: 10.1530/raf-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cytotoxic chemotherapies have been a mainstay of cancer treatment, but are associated with numerous systemic adverse effects, including impacts to fertility and endocrine health. Irreversible ovarian damage and follicle depletion are side-effects of chemotherapy that can lead to infertility and premature menopause, both being major concerns of young cancer patients. Notably, many women will proceed with fertility preservation, but unfortunately existing strategies don't entirely solve the problem. Most significantly, oocyte and embryo freezing do not prevent cancer treatment-induced ovarian damage from occurring, which may result in the impairment of long-term hormone production. Unfortunately, loss of endogenous endocrine function is not fully restored by hormone replacement therapy. Additionally, while GnRH agonists are standard care for patients receiving alkylating chemotherapy to lessen the risk of premature menopause, their efficacy is incomplete. The lack of more broadly effective options stems, in part, from our poor understanding of how different treatments damage the ovary. Here, we summarise the impacts of two commonly utilised chemotherapies - cyclophosphamide and cisplatin - on ovarian function and fertility, and discuss the mechanisms underpinning this damage. Additionally, we critically analyse current research avenues in the development of novel fertility preservation strategies, with a focus on fertoprotective agents.
Collapse
Affiliation(s)
- Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Quynh-Nhu Nguyen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Paediatric Integrated Cancer Service, VIC, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Navakauskienė R, Žukauskaitė D, Borutinskaitė VV, Bukreieva T, Skliutė G, Valatkaitė E, Zentelytė A, Piešinienė L, Shablii V. Effects of human placenta cryopreservation on molecular characteristics of placental mesenchymal stromal cells. Front Bioeng Biotechnol 2023; 11:1140781. [PMID: 37122871 PMCID: PMC10133466 DOI: 10.3389/fbioe.2023.1140781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Cryopreservation of placenta tissue for long-term storage provides the opportunity in the future to isolate mesenchymal stromal cells that could be used for cell therapy and regenerative medicine. Despite being widely used, the established cryopreservation protocols for freezing and thawing still raise concerns about their impact on molecular characteristics, such as epigenetic regulation. In our study, we compared the characteristics of human placental mesenchymal stromal cells (hPMSCs) isolated from fresh (native) and cryopreserved (cryo) placenta tissue. We assessed and compared the characteristics of native and cryo hPMSCs such as morphology, metabolic and differentiation potential, expression of cell surface markers, and transcriptome. No significant changes in immunophenotype and differentiation capacity between native and cryo cells were observed. Furthermore, we investigated the epigenetic changes and demonstrated that both native and cryo hPMSCs express only slight variations in the epigenetic profile, including miRNA levels, DNA methylation, and histone modifications. Nevertheless, transcriptome analysis defined the upregulation of early-senescence state-associated genes in hPMSCs after cryopreservation. We also evaluated the ability of hPMSCs to improve pregnancy outcomes in mouse models. Improved pregnancy outcomes in a mouse model confirmed that isolated placental cells both from native and cryo tissue have a positive effect on the restoration of the reproductive system. Still, the native hPMSCs possess better capacity (up to 66%) in comparison with cryo hPMSCs (up to 33%) to restore fertility in mice with premature ovarian failure. Our study demonstrates that placental tissue can be cryopreserved for long-term storage with the possibility to isolate mesenchymal stromal cells that retain characteristics suitable for therapeutic use.
Collapse
Affiliation(s)
- Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| | - Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Nanodiagnostika, Ltd., Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| |
Collapse
|
9
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
10
|
Ahmed S, Soliman A, De Sanctis V, Alyafei F, Alaaraj N, Hamed N, Yassin M. A Short Review on Growth and Endocrine Long-term Complications in Children and Adolescents with β-Thalassemia Major: Conventional Treatment versus Hematopoietic Stem Cell Transplantation. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022290. [PMID: 36043958 PMCID: PMC9534255 DOI: 10.23750/abm.v93i4.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022]
Abstract
The conventional treatment of β-thalassemia (β-TM) patients is based on the correction of anemia through regular blood transfusions and iron chelation therapy. However, allogeneic hematopoietic stem cell transplantation (HSCT) remains the only currently available technique that has curative potential. Variable frequency and severity of long-term growth and endocrine changes after conventional treatment as well as after HSCT have been reported by different centers. The goal of this mini-review is to summarize and update knowledge about long-term growth and endocrine changes after HSCT in patients with β-TM in comparison to those occurring in β-TM patients on conventional treatment. Regular surveillance, early diagnosis, treatment, and follow-up in a multi-disciplinary specialized setting are suggested to optimize the patient's quality of life (www.actabiomedica.it).
Collapse
Affiliation(s)
- Shayma Ahmed
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Ashraf Soliman
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Vincenzo De Sanctis
- Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy
| | - Fawzia Alyafei
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Nada Alaaraj
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Noor Hamed
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Mohamed Yassin
- Department of Hematology, Cancer Research Center, Hamad Medical Center, Doha, Qatar
| |
Collapse
|