1
|
Lin H, Feng Y, Liu H, Zhang J, Zhang X, Ying X, Shi Y, Tan H, Tu W. Whole Transcriptome-Based ceRNA Regulatory Network Analysis of Radiation-Induced Esophageal Epithelial Cell Injury. Biologics 2025; 19:231-249. [PMID: 40296868 PMCID: PMC12034488 DOI: 10.2147/btt.s496064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Introduction Esophageal epithelial cells are essential for esophageal homeostasis and defense against harmful stimuli, but the mechanisms of radiation-induced injury in these cells are poorly understood. The competitive endogenous RNA (ceRNA) network, involved in various physiological processes and diseases, may also play a role in radiation-induced injury, although its mechanism remains unclear. This study aimed to investigate the effects of ionizing radiation on human esophageal epithelial cells and explore the role of the ceRNA network in this injury. Methods Cellular phenotype experiments assessed the effects of ionizing radiation on human esophageal epithelial cells. Whole transcriptome sequencing (lncRNA, circRNA, miRNA, and mRNA) was performed on cells exposed to 0, 2, and 4 Gy radiation. Differentially expressed RNAs (dd-DERs) were identified through differential expression analysis and dose-dependent screening. A ceRNA network was constructed using co-expression analysis and binding site prediction. Real-time quantitative PCR validated the expression levels of selected dd-DERs, and gene set enrichment analysis explored affected pathways. Results We identified 41 lncRNAs, 18 miRNAs, and 192 mRNAs as dose-dependent differentially expressed RNAs. A ceRNA network comprising 10 lncRNAs, 5 miRNAs, and 55 mRNAs was established. Real-time PCR confirmed the expression levels of 8 dd-DERs within the network. Gene set enrichment analysis showed that radiation disrupted channel activity, cell replication, repair, and immune response. Functional enrichment analysis revealed modulation of metabolic pathways, particularly involving UGT1A family members. Discussion This study established a ceRNA network related to radiation-induced esophageal epithelial cell injury, advancing our understanding of its pathophysiology. The ceRNA network may mediate injury through metabolic pathway modulation. Future work should focus on elucidating specific ceRNA interactions and exploring therapeutic potential for mitigating radiation-induced esophageal injury.
Collapse
Affiliation(s)
- Hongyu Lin
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yahui Feng
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, People’s Republic of China
| | - Hangfeng Liu
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Jinkang Zhang
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Xiaolin Zhang
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Xue Ying
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, People’s Republic of China
| | - Yuhong Shi
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Hao Tan
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, People’s Republic of China
| |
Collapse
|
2
|
Rao V, Singh S, Zade B. Advances in radiotherapy in the treatment of esophageal cancer. World J Clin Oncol 2025; 16:102872. [PMID: 40130058 PMCID: PMC11866087 DOI: 10.5306/wjco.v16.i3.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
Recent advancements in radiotherapy for esophageal cancer have significantly improved treatment outcomes and patient quality of life. Traditional radiotherapy techniques have been enhanced by the integration of advanced imaging and precision targeting technologies, such as intensity-modulated radiotherapy and proton therapy, which allow for more accurate tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, combining radiotherapy with immunotherapy has shown promising results, leveraging the body's immune response to enhance the effectiveness of cancer treatment. Studies have also highlighted the benefits of neoadjuvant chemoradiation followed by surgical resection, which has been associated with improved overall survival rates compared to radiotherapy alone. These innovations are paving the way for more effective and personalized treatment strategies, offering new hope for patients with esophageal cancer.
Collapse
Affiliation(s)
- Vrushab Rao
- Department of Cyberknife Radiosurgery and Radiation Oncology, Ruby Hall Clinic, Pune 411001, Maharashtra, India
| | - Soumya Singh
- Department of Cyberknife Radiosurgery and Radiation Oncology, Ruby Hall Clinic, Pune 411001, Maharashtra, India
| | - Bhooshan Zade
- Department of Cyberknife Radiosurgery and Radiation Oncology, Ruby Hall Clinic, Pune 411001, Maharashtra, India
| |
Collapse
|
3
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
4
|
Xu X, Liu J, Fang C, Deng X, Zhu D, Jiang J, Wu C. NAALADL2-AS2 functions as a competing endogenous RNA to regulate apoptosis and drug resistance in DLBCL. Cancer Biol Ther 2024; 25:2432690. [PMID: 39575888 PMCID: PMC11587827 DOI: 10.1080/15384047.2024.2432690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
To explore role of NAALADL2-AS2 as ceRNA in DLBCL. Fluorescence in situ hybridization was used to determine location of NAALADL2-AS2 in cells and to verify its expression in DLBCL tissues. The miRNAs interacting with NAALADL2-AS2 and related regulatory genes were identified by small interfering RNA (siRNA) assay, luciferase reporter assay, fluorescent quantitative polymerase chain reaction, western blotting. DLBCL cells transfected with NAALADL2-AS2 siRNA or control siRNA were treated with doxorubicin, rituximab at different concentrations alone or in combination. The growth curves, drug sensitivity changes of cells before and after transfection were detected by MTT assay, ATP-TCA drug sensitivity test. Cell proliferation was detected by BrdU cell proliferation assay, and apoptosis was detected by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The effects and mechanisms of NAALADL2-AS2 on proliferation, apoptosis, drug resistance of DLBCL cells were studied at cellular level. We confirmed expression of NAALADL2-AS2 in both cytoplasm and nuclei of DLBCL cells. Additionally, we observed elevated levels of NAALADL2-AS2 in DLBCL tissues. We discovered that NAALADL2-AS2 functions as ceRNA to inhibit expression of miR-34a, miR-125a, whereas overexpression of NAALADL2-AS2 indirectly upregulates expression of BCL-2. Interfering with NAALADL2-AS2 promoted apoptosis in DLBCL cells, resulting in approximately a 40% increase in sensitivity to doxorubicin and rituximab. In vivo experiments further confirmed that targeting NAALADL2-AS2 effectively suppressed tumor growth, leading to upregulation of miR-34a and miR-125a, downregulation of BCL-2, and enhanced apoptosis in DLBCL cells, which significantly improved their sensitivity to doxorubicin and rituximab by approximately 50%. These results indicate that NAALADL2-AS2/miR-34a, miR-125a/BCL-2 networks hold promise as therapeutic targets for treatment of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Apoptosis/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Cell Proliferation/drug effects
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Juan Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Danxia Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
He H, Wang Z, Fang C, Yan J. Tongue Squamous Cell Carcinoma Prognosis Can Be Effectively Predicted by LncRNA LIPH4: A Prospective Study. Int J Gen Med 2024; 17:4119-4126. [PMID: 39308967 PMCID: PMC11414749 DOI: 10.2147/ijgm.s474142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose LIPH4 has been identified as an oncogenic lncRNA in different malignant diseases. This research aims to elucidate the link between the expression of LIPH4 and its prognostic application in tongue squamous cell carcinoma (TSCC). Methods To assess the expression of LIPH4, 142 TSCC and normal cases, respectively, which met the selection parameters, were used for qRT-PCR analysis. Furthermore, the association of LIPH4 expression with TSCC's clinicopathological features was identified via the Chi-square test. Moreover, the Kaplan-Meier test was used for calculating the survival rates, whereas the association of patient survival with prognostic factors was assessed with the help of Cox proportional hazard analysis. Results The data indicated upregulated LIPH4 levels in TSCC samples than healthy samples. Furthermore, LIPH4 expression was associated with TSCC differentiation and stage, where increased expression indicated reduced disease-free survival (DFS) and overall survival (OS) rates. Additionally, advanced TSCC individuals with enhanced LIPH4 expression had reduced OS and DFS rates than those with reduced LIPH4 expression. Serum LIPH4 could be a promising diagnostic bio-index for TSCC, with an area under the curve of 0.8920 (95% CI = 0.8540-0.9299). These data revealed that the overexpression of LIPH4 might be a substantial prognostic factor for independently predicting the OS and DFS rates of TSCC patients. Conclusion Altogether, this research revealed that the expression of LIPH4 expression is closely associated with TSCC progression and, therefore, can be employed as a biomarker for its prognosis.
Collapse
Affiliation(s)
- Hailei He
- Department of Oral and Maxillofacial Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Zhen Wang
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, People’s Republic of China
| | - Cuilin Fang
- Department of Medicine and Equipment, Ganzhou Cancer Hospital, Ganzhou, Jiangxi, 341005, People’s Republic of China
| | - Junfeng Yan
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
6
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
7
|
Duan Y, Yan Y, Fu H, Dong Y, Li K, Ye Z, Dou Y, Huang B, Kang W, Wei GH, Cai Q, Xu D, Zhou D. SNHG15-mediated feedback loop interplays with HNRNPA1/SLC7A11/GPX4 pathway to promote gastric cancer progression. Cancer Sci 2024; 115:2269-2285. [PMID: 38720175 PMCID: PMC11247605 DOI: 10.1111/cas.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghao Yan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Feng H, Xu D, Jiang C, Chen Y, Wang J, Ren Z, Li X, Zhang XD, Cang S. LINC01559 promotes lung adenocarcinoma metastasis by disrupting the ubiquitination of vimentin. Biomark Res 2024; 12:19. [PMID: 38311781 PMCID: PMC10840222 DOI: 10.1186/s40364-024-00571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Distant metastasis is the major cause of lung adenocarcinoma (LUAD)-associated mortality. However, molecular mechanisms involved in LUAD metastasis remain to be fully understood. While the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance is being increasingly appreciated, the list of dysregulated lncRNAs that contribute to LUAD pathogenesis is also rapidly expanding. METHODS Bioinformatics analysis was conducted to interrogate publicly available LUAD datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human LUAD tissues and cell lines, respectively. Wound healing as well as transwell migration and invasion assays were employed to examine LUAD cell migration and invasion in vitro. LUAD metastasis was examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were carried out to test RNA-protein associations. Cycloheximide-chase assays were performed to monitor protein turnover rates and Western blotting was employed to test protein expression. RESULTS The expression of the lncRNA LINC01559 was commonly upregulated in LUADs, in particular, in those with distant metastasis. High LINC01559 expression was associated with poor outcome of LUAD patients and was potentially an independent prognostic factor. Knockdown of LINC01559 diminished the potential of LUAD cell migration and invasion in vitro and reduced the formation of LUAD metastatic lesions in vivo. Mechanistically, LINC01559 binds to vimentin and prevents its ubiquitination and proteasomal degradation, leading to promotion of LUAD cell migration, invasion, and metastasis. CONCLUSION LINC01559 plays an important role in LUAD metastasis through stabilizing vimentin. The expression of LINC01559 is potentially an independent prognostic factor of LUAD patients, and LINC01559 targeting may represent a novel avenue for the treatment of late-stage LUAD.
Collapse
Affiliation(s)
- Hao Feng
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dengfei Xu
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Chenyang Jiang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuming Chen
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junru Wang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zirui Ren
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiang Li
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Henan, 450003, China.
| | - Shundong Cang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-Coding RNA Translational Research, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
9
|
Wu F, Zhang X, Zhang S, Zhang Y, Feng Y, Jiang Z, Shi Y, Zhang S, Tu W. Construction of an immune-related lncRNA-miRNA-mRNA regulatory network in radiation-induced esophageal injury in rats. Int Immunopharmacol 2023; 122:110606. [PMID: 37423154 DOI: 10.1016/j.intimp.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Radiation-induced esophageal injury (RIEI) is an adverse reaction of radiation therapy in patients with esophageal cancer, lung cancer and other malignant tumors. Competitive endogenous RNA (ceRNA) network is known to play a significant role in the onset and progression of many diseases, but the exact mechanism of ceRNA in RIEI has not been fully elucidated. In this study, rat esophaguses were obtained after conducting irradiation under different doses (0 Gy, 25 Gy, 35 Gy). Total RNA was extracted and mRNA, lncRNA, circRNA, and miRNA sequencing was performed. Multiple dose-dependent differentially expressed RNAs (dd-DERs), including 870 lncRNAs, 82 miRNAs, 2478 mRNAs, were obtained through the integration of differential expression analysis and dose-dependent screening (35 Gy ≥ 25 Gy > 0 Gy, or 35 Gy ≤ 25 Gy < 0 Gy). Co-expression analysis and prediction of the binding site in dd-DER were conducted and 27 lncRNAs, 20 miRNAs, and 168 mRNAs were selected to construct a ceRNA network. As the immune microenvironment is crucial for RIEI progression, we constructed an immune-related ceRNA network consisting of 11 lncRNAs, 9 miRNAs, and 9 mRNAs. The expression levels of these immune-related RNAs were verified by RT-qPCR. Immune infiltration analysis showed that the RNAs in the immune-related ceRNA network were mainly associated with the proportion of monocytes, M2 macrophages, activated NK cells, and activated CD4+ memory T cells. Drug sensitivity analysis was conducted based on the expression levels of mRNAs in the immune-related ceRNA network, and small molecule drugs with preventive and therapeutic effects on RIEI were identified. In summary, an immune-related ceRNA network associated with RIEI progression was constructed in this study. The findings provide useful information on new potential targets for the prevention and treatment of RIEI.
Collapse
Affiliation(s)
- Fengping Wu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Xiaolin Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yahui Feng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| | - Zhiqiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuyu Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| |
Collapse
|
10
|
Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current Status and Future Prospects for Esophageal Cancer. Cancers (Basel) 2023; 15:765. [PMID: 36765722 PMCID: PMC9913274 DOI: 10.3390/cancers15030765] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Esophageal cancer (EC) is the ninth most common cancer and the sixth leading cause of cancer deaths worldwide. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two main histological subtypes with distinct epidemiological and clinical features. While the global incidence of ESCC is declining, the incidence of EAC is increasing in many countries. Decades of epidemiologic research have identified distinct environmental exposures for ESCC and EAC subtypes. Recent advances in understanding the genomic aspects of EC have advanced our understanding of EC causes and led to using specific genomic alterations in EC tumors as biomarkers for early diagnosis, treatment, and prognosis of this cancer. Nevertheless, the prognosis of EC is still poor, with a five-year survival rate of less than 20%. Currently, there are significant challenges for early detection and secondary prevention for both ESCC and EAC subtypes, but Cytosponge™ is shifting this position for EAC. Primary prevention remains the preferred strategy for reducing the global burden of EC. In this review, we will summarize recent advances, current status, and future prospects of the studies related to epidemiology, time trends, environmental risk factors, prevention, early diagnosis, and treatment for both EC subtypes.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| |
Collapse
|