1
|
Lertsakulbunlue S, Khimmaktong W, Khow O, Chantkran W, Noiphrom J, Promruangreang K, Chanhome L, Chaisakul J. Snake Venom Pharmacokinetics and Acute Toxic Outcomes Following Daboia siamensis Envenoming: Experimental and Clinical Correlations. Toxins (Basel) 2024; 17:10. [PMID: 39852963 PMCID: PMC11769258 DOI: 10.3390/toxins17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
An understanding of snake venom pharmacokinetics is essential for determining clinical outcomes of envenoming and developing therapeutic approaches to the treatment of envenoming, especially regarding the timing and optimal dosage of antivenom administration. Daboia siamensis (Eastern Russell's viper) envenoming causes systemic coagulopathy and severe hemorrhage including acute kidney injury. These toxic outcomes can be diminished by the administration of high quantities of Russell's viper antivenom. This study aimed to determine the correlation between the clinical profiles of D. siamensis envenomed patients and experimental data by measuring plasma venom concentration and conducting histopathological analyses of heart, kidney, and liver tissues in rats 6 h after experimental D. siamensis envenomation. Intramuscular (i.m.) administration of D. siamensis venom to anesthetized rats (200 µg/kg) resulted in a rapid absorption of venom which reached a peak concentration at 60 min before declining and then plateauing. Urine samples detected 209.3 ± 21.6 ng/mL of D. siamensis venom following i.m. administration at 6 h. Histopathological studies showed morphological changes in heart, kidney, and liver tissues following 3 h experimental envenoming and exhibited a higher degree of severity at 6 h. A retrospective study of the clinical profile and laboratory examination of Russell's viper envenomed patients in Central Thailand was also evaluated, showing that systemic coagulopathy and local effects were commonly observed in the early stage of D. siamensis envenoming. An abnormal increase in creatinine levels was found in 13.6% of the population. Early administration of specific antivenom within 1-2 h following envenoming is highly recommended to prevent life-threatening outcomes such as severe coagulation and acute kidney injury.
Collapse
Affiliation(s)
| | - Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Orawan Khow
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (J.N.)
| | - Wittawat Chantkran
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Jureeporn Noiphrom
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (J.N.)
| | - Kanyanat Promruangreang
- Forensic Toxicology Unit, Department of Forensic Medicine, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| |
Collapse
|
2
|
Win MN, Yee KT, Htwe KM, Thin EE, Win SM, Kyaw AM, Aye MM, Khaing KK, Thwe WM, Htwe KK, Zaw A. Biochemical and biological characterization of the venoms of Naja kaouthia and Naja mandalayensis from Myanmar and neutralization effects of BPI cobra antivenom. Toxicon X 2024; 22:100196. [PMID: 38665175 PMCID: PMC11043865 DOI: 10.1016/j.toxcx.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Snakebite is a neglected public health issue, with many scientific and medical issues to be solved. Cobras are among the most common venomous snakes in Myanmar and are responsible for a considerable number of severe snakebite envenoming. There are three species of cobra (Naja kaouthia, Naja mandalayensis and Ophiophagus hannah) in Myanmar. The study aims to characterize the N. kaouthia and N. mandalayensis venoms and to investigate the efficacy of anti-cobra antivenom (BPI) against the two venoms. Protein components and fibrinogenolytic activity were determined by SDS-PAGE. Enzymatic activities for PLA2, protease and acetylcholinesterase were determined by spectrophotometric method. Anticoagulant activity was determined by recalcification time of citrated human plasma. Myotoxicity, necrotizing activity, median lethal dose (LD50) and median effective dose (ED50) were determined by WHO recommended methods. The SDS-PAGE displayed the proteins and enzymes containing in two venoms were different. N. kaouthia venom exhibited more in PLA2, acetylcholinesterase, anticoagulant, fibrinogenolytic and necrotizing activities than N. mandalayensis venom. N. mandalayensis venom had more protease activity and myotoxicity than N. kaouthia venom. The median lethal dose (LD50) of N. kaouthia and N. mandalayensis venom was 4.33 μg/mouse and 5.04 μg/mouse respectively. Both venoms induced fibrinogen Aα chain degradation in 30 min (N. kaouthia) and in 6 h (N. mandalayensis). The same median effective dose (ED50) (19.56 μg/mouse) showed that anti-NK antivenom can neutralize against lethal effect of N. mandalayensis venom. It can also neutralize the protease activity, anticoagulant activity and fibrinogenolytic activity of both venoms. Immunodiffusion and immunoblotting studies showed that the antivenom recognized its homologous venom (N. kaouthia) and cross-reacted against the heterologous venom (N. mandalayensis). The anti-NK antivenom is suitable to use for N. mandalayensis bite if monospecific antivenom is not available.
Collapse
Affiliation(s)
- Mya Nila Win
- Myanma Pharmaceutical Enterprise, Yangon, Myanmar
| | | | | | - Ei Ei Thin
- University of Pharmacy, Mandalay, Myanmar
| | - Su Mon Win
- Department of Medical Research, Yangon, Myanmar
| | | | - Myo Myo Aye
- Department of Medical Research, Yangon, Myanmar
| | | | | | | | - Aung Zaw
- Myanma Pharmaceutical Enterprise, Yangon, Myanmar
| |
Collapse
|
3
|
Khimmaktong W, Nuanyaem N, Lorthong N, Hodgson WC, Chaisakul J. Histopathological Changes in the Liver, Heart and Kidneys Following Malayan Pit Viper ( Calloselasma rhodostoma) Envenoming and the Neutralising Effects of Hemato Polyvalent Snake Antivenom. Toxins (Basel) 2022; 14:601. [PMID: 36136539 PMCID: PMC9505761 DOI: 10.3390/toxins14090601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
Calloselasma rhodostoma (Malayan pit viper) is a medically important snake species that is widely distributed across Southeast Asia. Systemic coagulopathy causing severe haemorrhage and local tissue injury is commonly observed following C. rhodostoma envenoming. However, nephrotoxicity and congestive heart failure were previously reported in a patient who had a long length of hospital stay. In this study, we determined the effect of C. rhodostoma envenoming on cardiovascular disturbances and the associated morphological changes in the liver, heart and kidneys using animal models. We also evaluated the efficacy of Hemato polyvalent antivenom (HPAV; Queen Saovabha Memorial Institute (QSMI) of the Thai Red Cross Society, Thailand) in neutralising the histopathological effects of C. rhodostoma venom. The intravenous (i.v.) administration of C. rhodostoma venom (1000 µg/kg) caused a rapid decrease in mean arterial pressure (MAP) followed by complete cardiac collapse in anaesthetized rats. Moreover, the intraperitoneal (i.p.) administration of C. rhodostoma venom (11.1 mg/kg; 3 × LD50) for 24 h caused cellular lesions in the liver and heart tissues. C. rhodostoma venom also induced nephrotoxicity, as indicated by the presence of tubular injury, interstitial vascular congestion and inflammatory infiltration in the whole area of the kidney. The administration of HPAV, at manufacturer-recommended doses, 15 min prior to or after the addition of C. rhodostoma venom reduced the extent of the morphological changes in the liver, heart and kidneys. This study found that experimental C. rhodostoma envenoming induced cardiovascular disturbances, hepatotoxicity and nephrotoxicity. We also highlighted the potential broad utility of HPAV to neutralise the histopathological effects of C. rhodostoma venom. The early delivery of antivenom appears capable of preventing envenoming outcomes.
Collapse
Affiliation(s)
- Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nazmi Nuanyaem
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nissara Lorthong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Yuan FL, Prigge TL, Sung YH, Dingle C, Bonebrake TC. Two Genetically Distinct yet Morphologically Indistinct Bungarus Species (Squamata, Elapidae) in Hong Kong. CURRENT HERPETOLOGY 2022. [DOI: 10.5358/hsj.41.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Félix Landry Yuan
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, CHINA
| | - Tracey-Leigh Prigge
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, CHINA
| | - Yik-Hei Sung
- Science Unit, Lingnan University, Hong Kong SAR, CHINA
| | - Caroline Dingle
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, CHINA
| | - Timothy C. Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, CHINA
| |
Collapse
|
5
|
Chaisakul J, Khow O, Wiwatwarayos K, Rusmili MRA, Prasert W, Othman I, Abidin SAZ, Charoenpitakchai M, Hodgson WC, Chanhome L, Chaiyabutr N. A Biochemical and Pharmacological Characterization of Phospholipase A 2 and Metalloproteinase Fractions from Eastern Russell's Viper ( Daboia siamensis) Venom: Two Major Components Associated with Acute Kidney Injury. Toxins (Basel) 2021; 13:521. [PMID: 34437392 PMCID: PMC8402394 DOI: 10.3390/toxins13080521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) following Eastern Russell's viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3-10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Orawan Khow
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| | | | - Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Watcharamon Prasert
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 46150, Malaysia; (I.O.); (S.A.Z.A.)
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 46150, Malaysia; (I.O.); (S.A.Z.A.)
| | | | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| | - Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (L.C.); (N.C.)
| |
Collapse
|
6
|
Rusmili MRA, Othman I, Abidin SAZ, Yusof FA, Ratanabanangkoon K, Chanhome L, Hodgson WC, Chaisakul J. Variations in neurotoxicity and proteome profile of Malayan krait (Bungarus candidus) venoms. PLoS One 2019; 14:e0227122. [PMID: 31887191 PMCID: PMC6936869 DOI: 10.1371/journal.pone.0227122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Fathin Athirah Yusof
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
7
|
Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, Chaiyabutr N, Chanhome L, Tan CH, Casewell NR. Evaluation of the geographical utility of Eastern Russell's viper (Daboia siamensis) antivenom from Thailand and an assessment of its protective effects against venom-induced nephrotoxicity. PLoS Negl Trop Dis 2019; 13:e0007338. [PMID: 31644526 PMCID: PMC6850557 DOI: 10.1371/journal.pntd.0007338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/12/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand. METHODOLOGY/PRINCIPLE FINDINGS The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect. CONCLUSIONS/SIGNIFICANCE This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | | | - Kulachet Wiwatwarayos
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
- Institute of Pathology, Ministry of Public Health, Bangkok, Thailand
| | - Nattapon Sookprasert
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | | | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| |
Collapse
|